login
Search: a173258 -id:a173258
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of compositions of n with equal differences up to sign.
+10
20
1, 1, 2, 4, 6, 8, 13, 12, 20, 24, 25, 29, 49, 40, 50, 64, 86, 80, 105, 102, 164, 175, 186, 208, 325, 316, 382, 476, 624, 660, 814, 961, 1331, 1500, 1739, 2140, 2877, 3274, 3939, 4901, 6345, 7448, 9054, 11157, 14315, 17181, 20769, 25843, 32947, 39639, 48257, 60075
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).
EXAMPLE
The a(1) = 1 through a(8) = 20 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(121) (41) (42) (43) (44)
(1111) (131) (51) (52) (53)
(212) (123) (61) (62)
(11111) (141) (151) (71)
(222) (232) (161)
(321) (313) (242)
(1212) (12121) (323)
(2121) (1111111) (1232)
(111111) (1313)
(2123)
(2222)
(2321)
(3131)
(3212)
(21212)
(11111111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Abs[Differences[#]]&]], {n, 0, 15}]
PROG
(PARI)
step(R, n, s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
w(n, s)={my(R=matid(n), t=0); while(R, R=step(R, n, s); t+=vecsum(R[n, ])); t}
a(n) = {numdiv(max(1, n)) + sum(s=1, n-1, w(n, s))} \\ Andrew Howroyd, Aug 22 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 11 2019
EXTENSIONS
a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019
STATUS
approved
G.f.: 1/G(0) where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ).
+10
13
1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 4, 4, 6, 7, 8, 11, 13, 16, 20, 24, 31, 37, 46, 58, 70, 88, 108, 133, 167, 204, 252, 315, 386, 479, 594, 731, 909, 1122, 1386, 1720, 2124, 2628, 3254, 4022, 4980, 6160, 7618, 9432, 11665, 14433, 17860, 22093, 27341, 33824, 41847, 51785, 64065, 79267
OFFSET
0,13
COMMENTS
Number of rough sandpiles: 1-dimensional sandpiles (see A186085) with n grains without flat steps (no two successive parts of the corresponding composition equal), see example. - Joerg Arndt, Mar 08 2014
The sequence of such sandpiles by base length starts (n>=0) 1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, ... (A097331, essentially A000108 with interlaced zeros). This is a consequence of the obvious connection to Dyck paths, see example. - Joerg Arndt, Mar 09 2014
a(n>=1) are the Dyck paths with area n between the x-axis and the path which return to the x-axis only once (at their end), whereas A143951 includes paths with intercalated touches of the x-axis. - R. J. Mathar, Aug 22 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Joerg Arndt)
A. M. Odlyzko and H. S. Wilf, The editor's corner: n coins in a fountain, Amer. Math. Monthly, 95 (1988), 840-843.
FORMULA
a(0) = 1 and a(n) = abs(A049346(n)) for n>=1.
G.f.: 1/ (1-q/(1+q/ (1+q^2/(1-q^2/ (1-q^3/(1+q^3/ (1+q^4/(1-q^4/ (1-q^5/(1+q^5/ (1+-...) )) )) )) )) )).
G.f.: 1 + q * F(q,q) where F(q,y) = 1/(1 - y * q^2 * F(q, q^2*y) ); cf. A005169 and p. 841 of the Odlyzko/Wilf reference; 1/(1 - q * F(q,q)) is the g.f. of A143951. - Joerg Arndt, Mar 09 2014
G.f.: 1 + q/(1 - q^3/(1 - q^5/(1 - q^7/ (...)))) (from formulas above). - Joerg Arndt, Mar 09 2014
G.f.: F(x, x^2) where F(x,y) is the g.f. of A239927. - Joerg Arndt, Mar 29 2014
a(n) ~ c * d^n, where d = 1.23729141259673487395949649334678514763130846902468... and c = 0.0773368373684184197215007198148835507944051447907... - Vaclav Kotesovec, Sep 05 2017
G.f.: A(x) = 2 -1/A143951(x). - R. J. Mathar, Aug 23 2018
EXAMPLE
From Joerg Arndt, Mar 08 2014: (Start)
The a(21) = 7 rough sandpiles are:
:
: 1: [ 1 2 1 2 1 2 1 2 1 2 3 2 1 ] (composition)
:
: o
: o o o o ooo
: ooooooooooooo (rendering of sandpile)
:
:
: 2: [ 1 2 1 2 1 2 1 2 3 2 1 2 1 ]
:
: o
: o o o ooo o
: ooooooooooooo
:
:
: 3: [ 1 2 1 2 1 2 3 2 1 2 1 2 1 ]
:
: o
: o o ooo o o
: ooooooooooooo
:
:
: 4: [ 1 2 1 2 3 2 1 2 1 2 1 2 1 ]
:
: o
: o ooo o o o
: ooooooooooooo
:
:
: 5: [ 1 2 3 2 1 2 1 2 1 2 1 2 1 ]
:
: o
: ooo o o o o
: ooooooooooooo
:
:
: 6: [ 1 2 3 2 3 4 3 2 1 ]
:
: o
: o ooo
: ooooooo
: ooooooooo
:
:
: 7: [ 1 2 3 4 3 2 3 2 1 ]
:
: o
: ooo o
: ooooooo
: ooooooooo
(End)
From Joerg Arndt, Mar 09 2014: (Start)
The A097331(9) = 14 such sandpiles with base length 9 are:
01: [ 1 2 1 2 1 2 1 2 1 ]
02: [ 1 2 1 2 1 2 3 2 1 ]
03: [ 1 2 1 2 3 2 3 2 1 ]
04: [ 1 2 1 2 3 2 1 2 1 ]
05: [ 1 2 1 2 3 4 3 2 1 ]
06: [ 1 2 3 2 1 2 3 2 1 ]
07: [ 1 2 3 2 1 2 1 2 1 ]
08: [ 1 2 3 2 3 2 1 2 1 ]
09: [ 1 2 3 2 3 2 3 2 1 ]
10: [ 1 2 3 4 3 2 1 2 1 ]
11: [ 1 2 3 2 3 4 3 2 1 ]
12: [ 1 2 3 4 3 2 3 2 1 ]
13: [ 1 2 3 4 3 4 3 2 1 ]
14: [ 1 2 3 4 5 4 3 2 1 ]
(End)
PROG
(PARI) N = 66; q = 'q + O('q^N);
G(k) = if(k>N, 1, 1 + (-q)^(k+1) / (1 - (-q)^(k+1) / G(k+1) ) );
gf = 1 / G(0);
Vec(gf)
(PARI)
N = 66; q = 'q + O('q^N);
F(q, y, k) = if(k>N, 1, 1/(1 - y*q^2 * F(q, q^2*y, k+1) ) );
Vec( 1 + q * F(q, q, 0) ) \\ Joerg Arndt, Mar 09 2014
CROSSREFS
Cf. A049346 (g.f.: 1 - 1/G(0), where G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 06 2013
STATUS
approved
Number of compositions of n with weakly increasing differences.
+10
13
1, 1, 2, 4, 7, 11, 19, 28, 41, 62, 87, 120, 170, 228, 303, 408, 534, 689, 899, 1145, 1449, 1842, 2306, 2863, 3571, 4398, 5386, 6610, 8039, 9716, 11775, 14157, 16938, 20293, 24166, 28643, 33995, 40134, 47199, 55540, 65088, 75994, 88776, 103328, 119886, 139126
OFFSET
0,3
COMMENTS
Also compositions of n whose plot is concave-up.
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).
EXAMPLE
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(1111) (212) (114)
(311) (123)
(1112) (213)
(2111) (222)
(11111) (312)
(321)
(411)
(1113)
(2112)
(3111)
(11112)
(21111)
(111111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], LessEqual@@Differences[#]&]], {n, 0, 15}]
PROG
(PARI) \\ Row sums of R(n) give A007294 (=breakdown by width).
R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L, v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-w-1)\t + 1, v[i-w-(k-1)*t]))); Mat(L)}
seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M, n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j, w]))); x^i/(1 - x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 10 2019
EXTENSIONS
More terms from Alois P. Heinz, May 11 2019
STATUS
approved
Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
12
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 1, 2, 5, 2, 1, 1, 1, 1, 1, 3, 3, 5, 4, 1, 1, 1, 1, 1, 1, 2, 2, 7, 3, 1, 1, 1, 1, 1, 1, 3, 3, 6, 10, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 9, 2
OFFSET
0,6
LINKS
Alois P. Heinz, Antidiagonals n = 0..140
EXAMPLE
A(5,0) = 2: [5], [1,1,1,1,1].
A(5,1) = 4: [5], [3,2], [2,3], [2,1,2].
A(5,2) = 2: [5], [1,3,1].
A(5,3) = 3: [5], [4,1], [1,4].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 1, 1, 1, 1, 1, 1, ...
3, 2, 3, 1, 1, 1, 1, 1, ...
2, 4, 2, 3, 1, 1, 1, 1, ...
4, 5, 3, 2, 3, 1, 1, 1, ...
2, 5, 2, 3, 2, 3, 1, 1, ...
MAPLE
b:= proc(n, i, k) option remember;
`if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={-k, k})))
end:
A:= (n, k)-> `if`(n=0, 1, add(b(n, j, k), j=1..n)):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j, k], { j, Union[{-k, k}]}]]]; a[n_, k_] := If[n == 0, 1, Sum[b[n, j, k], {j, 1, n}]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
CROSSREFS
Columns k=0-2 give: A000005, A173258, A214254.
Rows n=0, 1 and main diagonal give: A000012.
KEYWORD
nonn,tabl,look
AUTHOR
Alois P. Heinz, Jul 08 2012
STATUS
approved
Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,...,k} \ {0}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 3, 4, 5, 5, 1, 1, 1, 1, 3, 4, 7, 11, 5, 1, 1, 1, 1, 3, 4, 7, 12, 14, 7, 1, 1, 1, 1, 3, 4, 7, 14, 20, 18, 10, 1, 1, 1, 1, 3, 4, 7, 14, 21, 30, 36, 9, 1, 1, 1, 1, 3, 4, 7, 14, 23, 36, 50, 49, 14, 1
OFFSET
0,14
LINKS
EXAMPLE
A(3,0) = 1: [3].
A(4,1) = 2: [4], [1,2,1].
A(5,2) = 5: [5], [3,2], [2,3], [2,1,2], [1,3,1].
A(6,3) = 12: [6], [4,2], [3,2,1], [3,1,2], [2,4], [2,3,1], [2,1,3], [2,1,2,1], [1,4,1], [1,3,2], [1,2,3], [1,2,1,2].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 3, 3, 3, 3, 3, 3, ...
1, 2, 4, 4, 4, 4, 4, 4, ...
1, 4, 5, 7, 7, 7, 7, 7, ...
1, 5, 11, 12, 14, 14, 14, 14, ...
1, 5, 14, 20, 21, 23, 23, 23, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n<1 or i<1, 0,
`if`(n=i, 1, add(b(n-i, i+j, k), j={$-k..k} minus{0})))
end:
A:= (n, k)-> `if`(n=0, 1, add(b(n, j, min(n, k)), j=1..n)):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n<1 || i<1, 0, If[n == i, 1, Sum[b[n-i, i+j, k], {j, Range[-k, -1] ~Join~ Range[k]}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, Min[n, k]], {j, 1, n}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
CROSSREFS
Columns k=0-2 give: A000012, A173258, A214256.
Main diagonal gives: A003242.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 08 2012
STATUS
approved
Number of compositions of n with equal circular differences up to sign.
+10
9
1, 2, 4, 5, 6, 10, 8, 16, 13, 16, 18, 32, 20, 30, 30, 57, 34, 52, 46, 96, 74, 86, 84, 174, 119, 170, 192, 306, 244, 332, 372, 628, 560, 694, 812, 1259, 1228, 1566, 1852, 2696, 2806, 3538, 4260, 5894, 6482, 8098, 9890, 13392, 15049, 18706, 23018, 30298, 35198
OFFSET
1,2
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).
EXAMPLE
The a(1) = 1 through a(8) = 16 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(1111) (41) (42) (43) (44)
(11111) (51) (52) (53)
(222) (61) (62)
(1212) (1111111) (71)
(2121) (1232)
(111111) (1313)
(2123)
(2222)
(2321)
(3131)
(3212)
(11111111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Abs[Differences[Append[#, First[#]]]]&]], {n, 15}]
PROG
(PARI)
step(R, n, s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
w(n, k, s)={my(R=matrix(n, n, i, j, i==j&&abs(i-k)==s), t=0); while(R, R=step(R, n, s); t+=R[n, k]); t}
a(n) = {numdiv(max(1, n)) + sum(s=1, n-1, sum(k=1, n, w(n, k, s)))} \\ Andrew Howroyd, Aug 22 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 11 2019
EXTENSIONS
a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019
STATUS
approved
Triangle read by rows: T(n,k) is the number of compositions of n with k parts and differences all equal to 1 or -1.
+10
8
1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 1, 4, 1, 0, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 0, 1, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 2, 1, 0, 3, 6, 1, 0, 0, 0, 0, 1, 0, 2, 4, 3, 0, 4, 2, 0, 0, 0, 0, 1, 2, 1, 0, 3, 8, 3, 0, 1, 0, 0, 0, 0
OFFSET
1,5
COMMENTS
Parts will alternate between being odd and even. For even k, a composition cannot be the same as its reversal and therefore for even k, T(n,k) is even.
LINKS
EXAMPLE
Triangle begins:
1;
1, 0;
1, 2, 0;
1, 0, 1, 0;
1, 2, 1, 0, 0;
1, 0, 2, 2, 0, 0;
1, 2, 1, 0, 1, 0, 0;
1, 0, 1, 4, 1, 0, 0, 0;
1, 2, 2, 0, 3, 2, 0, 0, 0;
1, 0, 1, 4, 2, 0, 1, 0, 0, 0;
1, 2, 1, 0, 3, 6, 1, 0, 0, 0, 0;
1, 0, 2, 4, 3, 0, 4, 2, 0, 0, 0, 0;
1, 2, 1, 0, 3, 8, 3, 0, 1, 0, 0, 0, 0;
1, 0, 1, 4, 3, 0, 6, 8, 1, 0, 0, 0, 0, 0;
1, 2, 2, 0, 4, 10, 5, 0, 5, 2, 0, 0, 0, 0, 0;
...
For n = 6 there are a total of 5 compositions:
k = 1: (6)
k = 3: (123), (321)
k = 4: (2121), (1212)
MAPLE
b:= proc(n, i) option remember; `if`(n<1 or i<1, 0,
`if`(n=i, x, add(expand(x*b(n-i, i+j)), j=[-1, 1])))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(add(b(n, j), j=1..n)):
seq(T(n), n=1..14); # Alois P. Heinz, Jul 22 2023
MATHEMATICA
b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, x, Sum[Expand[x*b[n - i, i + j]], {j, {-1, 1}}]]];
T[n_] := CoefficientList[Sum[b[n, j], {j, 1, n}], x] // Rest // PadRight[#, n]&;
Table[T[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Sep 06 2023, after Alois P. Heinz *)
PROG
(PARI)
step(R, n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + if(j+1<=n, R[i-j, j+1])) )}
T(n)={my(v=vector(n), R=matid(n), m=0); while(R, m++; v[m]+=vecsum(R[n, ]); R=step(R, n)); v}
for(n=1, 15, print(T(n)))
CROSSREFS
Row sums are A173258.
T(2n,n) gives A364529.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Aug 23 2019
STATUS
approved
Irregular triangle read by rows. An infinite binary tree which has root node 1 in row n = 0. Each node then has left child m-1 if greater than 0 and right child m+1, where m is the value of the parent node.
+10
8
1, 2, 1, 3, 2, 2, 4, 1, 3, 1, 3, 3, 5, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8, 1, 3, 1, 3, 3, 5, 1, 3, 1
OFFSET
0,2
COMMENTS
The paths through the tree represent the compositions counted in A173258 that have first part 1.
For rows n > 1, row n starts with row n-2.
Any positive number k will first appear in the (k-1)-th row and thereafter in rows of opposite parity to k. The number of times k will appear in row n is A053121(n,k-1).
Row n >= 1 gives the row lengths of the Christmas tree pattern of order n (cf. A367508). - Paolo Xausa, Nov 26 2023
A new row can be generated by applying the morphism 1 -> 2, t -> {t-1,t+1} (for t > 1) to the previous row. - Paolo Xausa, Dec 08 2023
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..13494 (rows 0..15 of the triangle, flattened).
EXAMPLE
Triangle begins:
n=0: 1;
n=1: 2;
n=2: 1, 3;
n=3: 2, 2, 4;
n=4: 1, 3, 1, 3, 3, 5;
n=5: 2, 2, 4, 2, 2, 4, 2, 4, 4, 6;
n=6: 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7;
...
The binary tree starts with root 1 in row n = 0. In row n = 2, the parent node 2 has the first left child since 2 - 1 > 0.
The tree begins:
row
[n]
[0] 1
\
[1] _________2_________
/ \
[2] 1 _____3_____
\ / \
[3] __2__ __2__ __4__
/ \ / \ / \
[4] 1 3 1 3 3 5
\ / \ \ / \ / \ / \
[5] 2 2 4 2 2 4 2 4 4 6
.
MATHEMATICA
SubstitutionSystem[{1->{2}, t_/; t>1:>{t-1, t+1}}, {1}, 8] (* Paolo Xausa, Dec 23 2023 *)
PROG
(Python)
def A363718_rowlist(root, row):
A = [[root]]
for i in range(0, row):
A.append([])
for j in range(0, len(A[i])):
if A[i][j] != 1:
A[i+1].append(A[i][j]-1)
A[i+1].append(A[i][j]+1)
return(A)
A363718_rowlist(1, 8)
CROSSREFS
Cf. A001405 (row lengths), A000079 (row sums).
KEYWORD
nonn,easy,tabf,changed
AUTHOR
John Tyler Rascoe, Jun 17 2023
STATUS
approved
Number of compositions of n with distinct circular differences up to sign.
+10
7
1, 1, 1, 1, 1, 1, 1, 7, 21, 31, 41, 87, 99, 191, 245, 381, 501, 735, 883, 1309, 1841, 2589, 3435, 4941, 6857, 9791, 13503, 19475, 27073, 37175, 52299, 72249, 100359, 139317, 190549, 256769, 355193, 471963, 644433, 858793, 1159161, 1530879, 2056073, 2711921
OFFSET
0,8
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).
EXAMPLE
The a(1) = 1 through a(8) = 21 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(124) (125)
(142) (134)
(214) (143)
(241) (152)
(412) (215)
(421) (251)
(314)
(341)
(413)
(431)
(512)
(521)
(1124)
(1142)
(1241)
(1421)
(2114)
(2411)
(4112)
(4211)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@Abs[Differences[Append[#, First[#]]]]&]], {n, 20}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 11 2019
EXTENSIONS
a(0) and a(26)-a(43) from Alois P. Heinz, Jan 28 2024
STATUS
approved
Number of compositions of n whose circular differences are all 1 or -1.
+10
6
0, 0, 2, 0, 2, 2, 2, 4, 4, 2, 8, 6, 8, 10, 12, 16, 18, 20, 28, 34, 42, 48, 62, 78, 92, 112, 146, 174, 216, 264, 326, 412, 500, 614, 770, 944, 1166, 1444, 1784, 2214, 2730, 3366, 4182, 5164, 6386, 7898, 9770, 12098, 14950, 18488, 22894, 28312, 35020, 43330, 53606
OFFSET
1,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).
LINKS
EXAMPLE
The a(3) = 2 through a(11) = 8 compositions (empty columns not shown):
(12) (23) (1212) (34) (1232) (45) (2323) (56)
(21) (32) (2121) (43) (2123) (54) (3232) (65)
(2321) (121212) (121232)
(3212) (212121) (123212)
(212123)
(212321)
(232121)
(321212)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ[1, ##]&@@Abs[Differences[Append[#, First[#]]]]&]], {n, 15}]
PROG
(PARI)
step(R, n, s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
a(n)={sum(k=1, n, my(R=matrix(n, n, i, j, i==j&&abs(i-k)==1), t=0); while(R, R=step(R, n, 1); t+=R[n, k]); t)} \\ Andrew Howroyd, Aug 23 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 11 2019
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Aug 23 2019
STATUS
approved

Search completed in 0.012 seconds