login
Search: a171947 -id:a171947
     Sort: relevance | references | number | modified | created      Format: long | short | data
Odd numbers missing from A171947.
+20
5
5, 13, 17, 21, 29, 37, 45, 49, 53, 61, 65, 69, 77, 81, 85, 93, 101, 109, 113, 117, 125, 133, 141, 145, 149, 157, 165, 173, 177, 181, 189, 193, 197, 205, 209, 213, 221, 229, 237, 241, 245, 253, 257, 261, 269, 273, 277, 285, 293, 301, 305, 309, 317, 321, 325
OFFSET
1,1
COMMENTS
These are the odd terms in A171946.
Consider the sequence of first differences, divided by 4: 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, ... This is, almost certainly, A026465 without its leading 1. - N. J. A. Sloane, Oct 30 2014
This sequence appears to be the same as A260191, Numbers n such that there exists no square whose base-n digit sum is binomial(n,2), without that sequence's leading 3. - Jon E. Schoenfield, Jul 19 2015
LINKS
MATHEMATICA
f[n_] := Block[{a = {1}, b = {}, k}, Do[k = 2; While[MemberQ[a, k] || MemberQ[b, k], k++]; AppendTo[a, 2 k - 1]; AppendTo[b, k], {i, 2, n}]; a]; Complement[Range[1, Max@ #, 2], #] &@ f@ 120 (* Michael De Vlieger, Jul 20 2015 *)
PROG
(Haskell)
a249034 n = a249034_list !! (n-1)
a249034_list = filter odd a171946_list
-- Reinhard Zumkeller, Oct 26 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 26 2014
STATUS
approved
N-positions for game of UpMark.
+10
6
0, 2, 4, 5, 6, 8, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 26, 28, 29, 30, 32, 34, 36, 37, 38, 40, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94, 96, 98
OFFSET
1,2
COMMENTS
It appears that this is the sequence of positions of 0 in the 1-limiting word of the morphism 0 -> 10, 1 -> 00; see A284948. - Clark Kimberling, Apr 18 2017
It appears that this sequence gives the positions of 1 in the limiting 0-word of the morphism 0->11, 1-> 01. See A285383. - Clark Kimberling, Apr 26 2017
Apparently a(n) = 1+A003159(n-1). - R. J. Mathar, Jun 24 2021
LINKS
Aviezri S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Math. 312 (2012), no. 1, 42-46.
PROG
(Haskell)
import Data.List (delete)
a171946 n = a171946_list !! (n-1)
a171946_list = 0 : f [2..] where
f (w:ws) = w : f (delete (2 * w - 1) ws)
-- Reinhard Zumkeller, Oct 26 2014
CROSSREFS
Complement of A171947.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 29 2010
STATUS
approved
1-limiting word of the morphism 0 -> 10, 1 -> 00
+10
4
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
OFFSET
1
COMMENTS
Consider iterations of the morphism defined by 0 -> 10, 1 -> 00: 0 -> 10 -> 0010 -> 10100010 -> 0010001010100010 -> ... There are two limiting words, one of which has initial term 1 and the other, 0. These are fixed points of the morphism squared: 0-> 0010, 1->1010. [Corrected by Michel Dekking, Jan 06 2019]
The 0-limiting word is 0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,... (A328979). It is the characteristic sequence of those natural numbers whose binary representation ends in an odd numbers of zeros, sequence A036554, but with offset 0 (easy to see from the fact that if the binary representation of N is equal to w, then the binary representations of 4N, 4N+1, 4N+2 and 4N+3 are w00, w01, w10 and w11). - Michel Dekking, Jan 06 2019
LINKS
MAPLE
f(0):= (0, 0, 1, 0): f(1):= (1, 0, 1, 0):
A:= [0]: # if start at 0 get A328979, if start at 1 get the present sequence
for i from 1 to 8 do A:= map(f, A) od:
A; # N. J. A. Sloane, Nov 05 2019
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0}}] &, {0}, 7] (* A284948 *)
u = Flatten[Position[s, 0]] (* A171946 *)
v = Flatten[Position[s, 1]] (* A171947 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 18 2017
STATUS
approved
Limiting 0-word of the morphism 0 -> 11, 1 -> 01.
+10
4
0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
OFFSET
1
FORMULA
a(n) = A285384(n) for n>=2.
Conjecture: a(n) = A035263(n-1). - R. J. Mathar, May 08 2017
EXAMPLE
0 -> 11-> 0101 -> 11011101 -> 0101110101011101 ->
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {0, 1}}] &, {0}, 10] (* A285383 *)
Flatten[Position[s, 0]] (* A171947 *)
Flatten[Position[s, 1]] (* A171946 *)
CROSSREFS
Cf. A171947, 171946, A285384.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 26 2017
STATUS
approved
Losing positions n (P-positions) in the following game: two players take turns dividing the current value of n by either a prime power > 1 or by A007947(n) to obtain the new value of n. The winner is the player whose division results in 1.
+10
0
1, 12, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 120, 124, 147, 148, 153, 164, 168, 171, 172, 175, 188, 207, 212, 216, 236, 242, 244, 245, 261, 264, 268, 270, 275, 279, 280, 284, 292, 312, 316, 325, 332, 333, 338, 356, 363, 369, 378, 387, 388
OFFSET
1,2
COMMENTS
The game is equivalent to the game of Nim with the additional allowed move consisting of removing one object from each pile.
MATHEMATICA
Clear[moves, los]; A003557[n_]:= {Module[{aux = FactorInteger[n], L=Length[FactorInteger[n]]}, Product[aux[[i, 1]]^(aux[[i, 2]]-1), {i, L}]]};
moves[n_] :=moves[n] = Module[{aux = FactorInteger[n], L=Length[ FactorInteger [n]]}, Union[Flatten[Table[n/aux[[i, 1]]^j, {i, 1, L}, {j, 1, aux[[i, 2]]}], 1], A003557[n]]]; los[1]=True; los[m_] := los[m] = If[PrimeQ[m], False, Union@Flatten@Table[los[moves[m][[i]]], {i, 1, Length[moves[m]]}] == {False}]; Select[Range[400], los]
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.005 seconds