login
Search: a163770 -id:a163770
     Sort: relevance | references | number | modified | created      Format: long | short | data
Row sums of the swinging derangement triangle (A163770).
+20
2
1, 1, 4, 15, -14, 185, -454, 2107, -6194, 22689, -70058, 234971, -734304, 2368379, -7404318, 23417955, -72988938, 228324569, -708982738, 2202742447, -6815736144, 21077285943, -65016664062, 200371842727, -616463969324, 1894794918275, -5816606133674, 17839764136377
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).
MAPLE
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
a := proc(n) local i, k; add(add((-1)^(n-i)*binomial(n-k, n-i)*swing(i), i=k..n), k=0..n) end:
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 03 2017 *)
CROSSREFS
Cf. A163770.
KEYWORD
sign
AUTHOR
Peter Luschny, Aug 05 2009
EXTENSIONS
Terms a(18) onward added by G. C. Greubel, Aug 03 2017
STATUS
approved
Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial inverse. Same as interpolating the central trinomial coefficients (A002426) with the central binomial coefficients (A000984).
+10
6
1, 1, 2, 3, 4, 6, 7, 10, 14, 20, 19, 26, 36, 50, 70, 51, 70, 96, 132, 182, 252, 141, 192, 262, 358, 490, 672, 924, 393, 534, 726, 988, 1346, 1836, 2508, 3432, 1107, 1500, 2034, 2760, 3748, 5094, 6930, 9438, 12870
OFFSET
0,3
COMMENTS
Triangle read by rows. For n >= 0, k >= 0 let T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040).
This is also the square array of central binomial coefficients A000984 in column 0 and higher (first: A051924, second, etc.) differences in subsequent columns, read by antidiagonals. - M. F. Hasler, Nov 15 2019
LINKS
Peter Luschny, Swinging Factorial.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
EXAMPLE
Triangle begins
1;
1, 2;
3, 4, 6;
7, 10, 14, 20;
19, 26, 36, 50, 70;
51, 70, 96, 132, 182, 252;
141, 192, 262, 358, 490, 672, 924;
From M. F. Hasler, Nov 15 2019: (Start)
The square array having central binomial coefficients A000984 in column 0 and higher differences in subsequent columns (col. 1 = A051924) starts:
1 1 3 7 19 51 ...
2 4 10 26 70 192 ...
6 14 36 96 262 726 ...
20 50 132 358 988 2760 ...
70 182 490 1346 3748 10540 ...
252 672 1836 5094 14288 40404 ...
(...)
Read by falling antidiagonals this yields the same sequence. (End)
MAPLE
For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
a := n -> DiffTria(k->swing(2*k), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 05 2009
STATUS
approved
Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial inverse.
+10
5
1, 5, 6, 19, 24, 30, 67, 86, 110, 140, 227, 294, 380, 490, 630, 751, 978, 1272, 1652, 2142, 2772, 2445, 3196, 4174, 5446, 7098, 9240, 12012, 7869, 10314, 13510, 17684, 23130, 30228, 39468, 51480
OFFSET
0,2
COMMENTS
Triangle read by rows. For n >= 0, k >= 0 let
T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).
LINKS
Peter Luschny, Swinging Factorial.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
EXAMPLE
1
5, 6
19, 24, 30
67, 86, 110, 140
227, 294, 380, 490, 630
751, 978, 1272, 1652, 2142, 2772
2445, 3196, 4174, 5446, 7098, 9240, 12012
MAPLE
For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
a := n -> DiffTria(k->swing(2*k+1), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[ (-1)^(n-i)*Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 05 2009
STATUS
approved

Search completed in 0.005 seconds