login
Search: a145603 -id:a145603
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.
+10
42
1, 3, 20, 175, 1764, 19404, 226512, 2760615, 34763300, 449141836, 5924217936, 79483257308, 1081724803600, 14901311070000, 207426250094400, 2913690606794775, 41255439318353700, 588272005095043500
OFFSET
0,2
COMMENTS
Number of parallelogram polyominoes having n+1 columns and n+1 rows. - Emeric Deutsch, May 21 2003
Number of tilings of an <n,2,n> hexagon.
a(n) is the number of non-crossing partitions of [2n+1] into n+1 blocks. For example, a[1] counts 13-2, 1-23, 12-3. - David Callan, Jul 25 2005
The number of returning walks of length 2n on the upper half of a square lattice, since a(n) = Sum_{k=0..2n} binomial(2n,k)*A126120(k)*A126869(n-k). - Andrew V. Sutherland, Mar 24 2008
For sequences counting walks in the upper half-plane starting from the origin and finishing at the lattice points (0,m) see A145600 (m = 1), A145601 (m = 2), A145602 (m = 3) and A145603 (m = 4). - Peter Bala, Oct 14 2008
The number of proper mergings of two n-chains. - Henri Mühle, Aug 17 2012
a(n) is number of pairs of non-intersecting lattice paths from (0,0) to (n+1,n+1) using (1,0) and (0,1) as steps. Here, non-intersecting means two paths do not share a vertex except the origin and the destination. For example, a(1) = 3 because we have three such pairs from (0,0) to (2,2): {NNEE,EENN}, {NNEE,ENEN}, {NENE,EENN}. - Ran Pan, Oct 01 2015
Also the number of ordered rooted trees with 2(n+1) nodes and n+1 leaves, i.e., half of the nodes are leaves. These trees are ranked by A358579. The unordered version is A185650. - Gus Wiseman, Nov 27 2022
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 94.
LINKS
Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, Enumeration of parallelogram polycubes, arXiv:2105.00971 [cs.DM], 2021.
E. Barcucci, A. Frosini and S. Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005). 62-78.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011), Article 11.4.5.
W. Y. C. Chen, S. X. M. Pang, E. X. Y. Qu and R. P Stanley, Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions, arXiv:0804.2930 [math.CO], 2008.
W. Y. C. Chen, S. X. M. Pang, E. X. Y. Qu and R. P Stanley, Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions, Discrete Math., 309 (2009), 2834-2838.
I. Marin and E. Wagner, A cubic defining algebra for the Links-Gould polynomial. arXiv preprint arXiv:1203.5981 [math.GT], 2012. - From N. J. A. Sloane, Sep 21 2012
H. Mühle, Counting Proper Mergings of Chains and Antichains, arXiv:1206.3922 [math.CO], 2012.
G. Xin, Determinant formulas relating to tableaux of bounded height, Adv. Appl. Math. 45 (2010) 197-211.
FORMULA
-4*a(n) = A010370(n+1).
G.f.: (1 - E(16*x)/(Pi/2))/(4*x) where E() is the elliptic integral of the second kind. [edited by Olivier Gérard, Feb 16 2011]
G.f.: 3F2(1, 1/2, 3/2; 2,2; 16*x)= (1 - 2F1(-1/2, 1/2; 1; 16*x)) / (4*x). - Olivier Gérard, Feb 16 2011
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x) * BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
a(n) = A001700(n)*A000108(n) = (1/2)*A000984(n+1)*A000108(n). - Zerinvary Lajos, Jun 06 2007
For n > 0, a(n) = (n+2)*A000356(n) starting (1, 5, 35, 294, ...). - Gary W. Adamson, Apr 08 2011
a(n) = A001263(2*n+1,n+1) = binomial(2*n+1,n+1)*binomial(2*n+1,n)/(2*n+1) (central members of odd numbered rows of Narayana triangle).
G.f.: If G_N(x) = 1 + Sum_{k=1..N} ((2*k)!*(2*k+1)!*x^k)/(k!*(k+1)!)^2, G_N(x) = 1 + 12*x/(G(0) - 12*x); G(k) = 16*x*k^2 + 32*x*k + k^2 + 4*k + 12*x + 4 - 4*x*(2*k+3)*(2*k+5)*(k+2)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence (n+1)^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = A005558(2n). - Mark van Hoeij, Aug 20 2014
a(n) = A000894(n) / (n+1) = A248045(n+1) / A000142(n+1). - Reinhard Zumkeller, Sep 30 2014
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: 2F2(1/2,3/2; 2,2; 16*x).
a(n) ~ 2^(4*n+1)/(Pi*n^2). (End)
a(n) = A005408(n)*(A000108(n))^2. - Ivan N. Ianakiev, Nov 13 2019
a(n) = det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(n+j+1,i+1). - Benoit Cloitre, Oct 22 2022
a(n) = Integral_{x=0..16} x^n*W(x) dx, where W(x) = (16*EllipticE(1 - x/16) - x*EllipticK(1 - x/16))/(8*Pi^2*sqrt(x)), n=>0. W(x) diverges at x=0, monotonically decreases for x>0, and vanishes at x=16. EllipticE and EllipticK are elliptic functions. This integral representation as n-th moment of a positive function W(x) on the interval [0, 16] is unique. - Karol A. Penson, Dec 20 2023
EXAMPLE
G.f. = 1 + 3*x + 20*x^2 + 175*x^3 + 1764*x^4 + 19404*x^5 + ...
From Gus Wiseman, Nov 27 2022: (Start)
The a(2) = 20 ordered rooted trees with 6 nodes and 3 leaves:
(((o)oo)) (((o)o)o) (((o))oo)
(((oo)o)) (((oo))o) ((o)(o)o)
(((ooo))) ((o)(oo)) ((o)o(o))
((o(o)o)) ((o(o))o) (o((o))o)
((o(oo))) ((oo)(o)) (o(o)(o))
((oo(o))) (o((o)o)) (oo((o)))
(o((oo)))
(o(o(o)))
(End)
MAPLE
with(combstruct): bin := {B=Union(Z, Prod(B, B))} :seq(1/2*binomial(2*i, i)*(count([B, bin, unlabeled], size=i)), i=1..18) ; # Zerinvary Lajos, Jun 06 2007
MATHEMATICA
a[ n_] := If[ n == -1, 0, Binomial[2 n + 1, n]^2 / (2 n + 1)]; (* Michael Somos, May 28 2014 *)
a[ n_] := SeriesCoefficient[ (1 - Hypergeometric2F1[ -1/2, 1/2, 1, 16 x]) / (4 x), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ BesselI[0, 2 x] BesselI[1, 2 x] / x, {x, 0, 2 n}]]; (* Michael Somos, May 28 2014 *)
a[ n_] := SeriesCoefficient[ (1 - EllipticE[ 16 x] / (Pi/2)) / (4 x), {x, 0, n}]; (* Michael Somos, Sep 18 2016 *)
a[n_] := (2 n + 1) CatalanNumber[n]^2;
Array[a, 20, 0] (* Peter Luschny, Mar 03 2020 *)
PROG
(PARI) {a(n) = binomial(2*n+1, n)^2 / (2*n + 1)}; /* Michael Somos, Jun 22 2005 */
(PARI) a(n) = matdet(matrix(n, n, i, j, binomial(n+j+1, i+1))) \\ Hugo Pfoertner, Oct 22 2022
(Magma) [Factorial(2*n)*Factorial(2*n+1) / (Factorial(n) * Factorial(n+1))^2: n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
(Haskell)
a000891 n = a001263 (2 * n - 1) n -- Reinhard Zumkeller, Oct 10 2013
CROSSREFS
Cf. A145600, A145601, A145602, A145603. - Peter Bala, Oct 14 2008
Equals half of A267981.
Counts the trees ranked by A358579.
A001263 counts ordered rooted trees by nodes and leaves.
A090181 counts ordered rooted trees by nodes and internals.
KEYWORD
nonn
EXTENSIONS
More terms from Andrew V. Sutherland, Mar 24 2008
STATUS
approved
a(n) is the number of walks from (0,0) to (0,1) that remain in the upper half-plane y >= 0 using (2*n - 1) unit steps either up (U), down (D), left (L) or right (R).
+10
8
1, 8, 75, 784, 8820, 104544, 1288287, 16359200, 212751396, 2821056160, 38013731756, 519227905728, 7174705330000, 100136810390400, 1409850293610375, 20002637245262400, 285732116760449700
OFFSET
1,2
COMMENTS
Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145601, A145602 and A145603. This sequence is the central column taken from triangle A145596, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 1.
REFERENCES
M. Dukes and Y. Le Borgne, Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013, Pages 816-842. - From N. J. A. Sloane, Feb 21 2013
LINKS
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
FORMULA
a(n) = 1/n*binomial(2*n,n+1)*binomial(2*n,n-1).
a(n) = A135389(n-1)/(n+1). - R. J. Mathar, Jul 14 2013
D-finite with recurrence (n+1)^2*a(n) -4*n*(5*n-1)*a(n-1) +16*(2*n-3)^2*a(n-2)=0. - R. J. Mathar, Jul 14 2013
EXAMPLE
a(2) = 8: the 8 walks from (0,0) to (0,1) of three steps are
UDU, UUD, URL, ULR, RLU, LRU, RUL and LUR.
MAPLE
a(n) := 1/n*binomial(2*n, n+1)*binomial(2*n, n-1);
seq(a(n), n = 1..19);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Oct 14 2008
STATUS
approved
Triangular array of generalized Narayana numbers: T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1).
+10
5
1, 5, 5, 15, 35, 15, 35, 140, 140, 35, 70, 420, 720, 420, 70, 126, 1050, 2700, 2700, 1050, 126, 210, 2310, 8250, 12375, 8250, 2310, 210, 330, 4620, 21780, 45375, 45375, 21780, 4620, 330, 495, 8580, 51480, 141570, 196625, 141570, 51480, 8580, 495, 715, 15015
OFFSET
4,2
COMMENTS
T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 4 and which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 4 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145597 (r = 2) and A145598 (r = 3).
LINKS
F. Cai, Q.-H. Hou, Y. Sun, A. L. B. Yang, Combinatorial identities related to 2x2 submatrices of recursive matrices, arXiv:1808.05736 Table 2.1 for k=4.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
FORMULA
T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1) for n >=4 and 1 <= k <= n-3. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 2,4). Row sums A003519.
O.g.f. for column k+2: 5/(k + 1) * y^(k+5)/(1 - y)^(k+7) * Jacobi_P(k,5,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) := sum {k = 1..n-3} T(n,k)*x^k:
x^4*R_(n-1)(x) = 5*(n - 1)*(n - 2)*(n - 3)*(n - 4)/((n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)) * sum {k = 0..n} binomial(n + 5,k) * binomial(2n - k,n) * (x - 1)^k;
sum {k = 1..n} (-1)^k*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-2) = A003519(n)*x^(n-2).
Row generating polynomial R_(n+4)(x) = 5/(n+5)*x*(1-x)^n * Jacobi_P(n,5,5,(1+x)/(1-x)). [From Peter Bala, Oct 31 2008]
EXAMPLE
Triangle starts
n\k|...1......2......3......4......5......6
===========================================
.4.|...1
.5.|...5......5
.6.|..15.....35.....15
.7.|..35....140....140.....35
.8.|..70....420....720....420.....70
.9.|.126...1050...2700...2700...1050....126
...
T(5,2) = 5: the 5 walks of length 5 from (0,0) to (1,4) are
UUUUR, UUURU, UURUU, URUUU and RUUUU.
MAPLE
with(combinat):
T:= (n, k) -> 5/(n+1)*binomial(n+1, k+4)*binomial(n+1, k-1):
for n from 4 to 13 do
seq(T(n, k), k = 1..n-3);
end do;
MATHEMATICA
Table[5/(n+1) Binomial[n+1, k+4]Binomial[n+1, k-1], {n, 4, 20}, {k, 0, n}]/.(0-> Nothing)//Flatten (* Harvey P. Dale, Jan 25 2021 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Bala, Oct 15 2008
STATUS
approved
a(n) is the number of walks from (0,0) to (0,2) that remain in the upper half-plane y >= 0 using 2*n unit steps either up (U), down (D), left (L) or right (R).
+10
5
1, 15, 189, 2352, 29700, 382239, 5010005, 66745536, 901995588, 12342120700, 170724392916, 2384209771200, 33577620944400, 476432168185575, 6805332732133125, 97790670976838400, 1412830549632694500
OFFSET
1,2
COMMENTS
Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145600, A145602 and A145603. This sequence is the central column taken from triangle A145597, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 2.
LINKS
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
FORMULA
a(n) = 3/(2*n+1)*binomial(2*n+1,n+2)*binomial(2*n+1,n-1).
EXAMPLE
a(2) = 15: the 15 walks from (0,0) to (0,2) of four steps are:
UUUD, UULR, UURL, UUDU, URUL, ULUR, URLU, ULRU,RUUL, LUUR,
RLUU, LRUU, RULU, LURU and UDUU.
MAPLE
with(combinat):
a(n) = 3/(2*n+1)*binomial(2*n+1, n+2)*binomial(2*n+1, n-1);
seq(a(n), n = 1..19);
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Oct 15 2008
STATUS
approved
a(n) is the number of walks from (0,0) to (0,3) that remain in the upper half-plane y >= 0 using 2*n +1 unit steps either up (U), down (D), left (L) or right (R).
+10
5
1, 24, 392, 5760, 81675, 1145144, 16032016, 225059328, 3173688180, 44986664800, 641087516256, 9183622822400, 132211882468575, 1912322889603000, 27781440618420000, 405248874740582400, 5933888308457316900
OFFSET
1,2
COMMENTS
Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145600, A145601 and A145603. This sequence is the central column taken from the triangle A145598, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 3.
LINKS
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
FORMULA
a(n) = 2/(n+1)*binomial(2*n+2,n+3)*binomial(2*n+2,n-1).
MAPLE
with(combinat):
a(n) = 2/(n+1)*binomial(2*n+2, n+3)*binomial(2*n+2, n-1);
seq(a(n), n = 1..19);
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Oct 15 2008
STATUS
approved

Search completed in 0.007 seconds