login
Search: a127936 -id:a127936
     Sort: relevance | references | number | modified | created      Format: long | short | data
Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.
(Formerly M0672 N0248)
+10
675
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161
OFFSET
1,1
COMMENTS
Equivalently, integers k such that 2^k - 1 is prime.
It is believed (but unproved) that this sequence is infinite. The data suggest that the number of terms up to exponent N is roughly K log N for some constant K.
Length of prime repunits in base 2.
The associated perfect number N=2^(p-1)*M(p) (=A019279*A000668=A000396), has 2p (=A061645) divisors with harmonic mean p (and geometric mean sqrt(N)). - Lekraj Beedassy, Aug 21 2004
In one of his first publications Euler found the numbers up to 31 but erroneously included 41 and 47.
Equals number of bits in binary expansion of n-th Mersenne prime (A117293). - Artur Jasinski, Feb 09 2007
Number of divisors of n-th even perfect number, divided by 2. Number of divisors of n-th even perfect number that are powers of 2. Number of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n). - Omar E. Pol, Feb 24 2008
Number of divisors of n-th even superperfect number A061652(n). Numbers of divisors of n-th superperfect number A019279(n), assuming there are no odd superperfect numbers. - Omar E. Pol, Mar 01 2008
Differences between exponents when the even perfect numbers are represented as differences of powers of 2, for example: The 5th even perfect number is 33550336 = 2^25 - 2^12 then a(5)=25-12=13 (see A135655, A133033, A090748). - Omar E. Pol, Mar 01 2008
Number of 1's in binary expansion of n-th even perfect number (see A135650). Number of 1's in binary expansion of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n) (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008
Indices of the numbers A006516 that are also even perfect numbers. - Omar E. Pol, Aug 30 2008
Indices of Mersenne numbers A000225 that are also Mersenne primes A000668. - Omar E. Pol, Aug 31 2008
The (prime) number p appears in this sequence if and only if there is no prime q<2^p-1 such that the order of 2 modulo q equals p; a special case is that if p=4k+3 is prime and also q=2p+1 is prime then the order of 2 modulo q is p so p is not a term of this sequence. - Joerg Arndt, Jan 16 2011
Primes p such that sigma(2^p) - sigma(2^p-1) = 2^p-1. - Jaroslav Krizek, Aug 02 2013
Integers k such that every degree k irreducible polynomial over GF(2) is also primitive, i.e., has order 2^k-1. Equivalently, the integers k such that A001037(k) = A011260(k). - Geoffrey Critzer, Dec 08 2019
Conjecture: for k > 1, 2^k-1 is (a Mersenne) prime or k = 2^(2^m)+1 (is a Fermat number) if and only if (k-1)^(2^k-2) == 1 (mod (2^k-1)k^2). - Thomas Ordowski, Oct 05 2023
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
R. K. Guy, Unsolved Problems in Number Theory, Section A3.
F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 57.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 19.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
B. Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.
LINKS
David Wasserman, Table of n, a(n) for n = 1..48 [Updated by N. J. A. Sloane, Feb 06 2013, Alois P. Heinz, May 01 2014, Jan 11 2015, Dec 11 2016, Ivan Panchenko, Apr 07 2018, Apr 09 2018, Benjamin Przybocki, Jan 05 2022]
P. T. Bateman, J. L. Selfridge, and S. S. Wagstaff, Jr., The new Mersenne conjecture, Amer. Math. Monthly 96 (1989), no. 2, 125--128. MR0992073 (90c:11009).
Andrew R. Booker, The Nth Prime Page
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
C. K. Caldwell, Mersenne Primes
C. K. Caldwell, Recent Mersenne primes
Zuling Chang, Martianus Frederic Ezerman, Adamas Aqsa, Fahreza, San Ling, Janusz Szmidt, and Huaxiong Wang, Binary de Bruijn Sequences via Zech's Logarithms, 2018.
Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019.
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
Leonhard Euler, Observations on a theorem of Fermat and others on looking at prime numbers, arXiv:math/0501118 [math.HO], 2005-2008.
G. Everest et al., Primes generated by recurrence sequences, arXiv:math/0412079 [math.NT], 2006.
G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
F. Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
Donald B. Gillies, Three new Mersenne primes and a statistical theory Mathematics of Computation 18.85 (1964): 93-97.
GIMPS (Great Internet Mersenne Prime Search), Distributed Computing Projects
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see p. 143.
Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018.
Albert A. Mullin, Letter to the editor, about "The new Mersenne conjecture" [Amer. Math. Monthly 96 (1989), no. 2, 125-128; MR0992073 (90c:11009)] by P. T. Bateman, J. L. Selfridge and S. S. Wagstaff, Jr., Amer. Math. Monthly 96 (1989), no. 6, 511. MR0999415 (90f:11008).
Curt Noll and Laura Nickel, The 25th and 26th Mersenne primes, Math. Comp. 35 (1980), 1387-1390.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
H. J. Smith, Mersenne Primes
B. Tuckerman, The 24th Mersenne prime, Proc. Nat. Acad. Sci. USA, 68 (1971), 2319-2320.
H. S. Uhler, On All Of Mersenne's Numbers Particularly M_193, PNAS 1948 34 (3) 102-103.
H. S. Uhler, First Proof That The Mersenne Number M_157 Is Composite, PNAS 1944 30(10) 314-316.
S. S. Wagstaff, Jr., The Cunningham Project
Eric Weisstein's World of Mathematics, Cunningham Number
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Eric Weisstein's World of Mathematics, Mersenne Prime
Eric Weisstein's World of Mathematics, Repunit
Eric Weisstein's World of Mathematics, Wagstaff's Conjecture
David Whitehouse, Number takes prime position (2^13466917 - 1 found after 13000 years of computer time)
K. Zsigmondy, Zur Theorie der Potenzreste, Monatshefte für Mathematik und Physik, Vol. 3, No. 1 (1892), 265-284.
FORMULA
a(n) = log((1/2)*(1+sqrt(1+8*A000396(n))))/log(2). - Artur Jasinski, Sep 23 2008 (under the assumption there are no odd perfect numbers, Joerg Arndt, Feb 23 2014)
a(n) = A000005(A061652(n)). - Omar E. Pol, Aug 26 2009
a(n) = A000120(A000396(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Oct 30 2013
a(n) = 1 + Sum_{m=1..L(n)}(abs(n-S(m))-abs(n-S(m)-1/2)+1/2), where S(m) = Sum_{k=1..m}(A010051(k)*A010051(2^k-1)) and L(n) >= a(n)-1. L(n) can be any function of n which satisfies the inequality. - Timothy Hopper, Jun 11 2015
a(n) = A260073(A000396(n)) + 1, again assuming there are no odd perfect numbers. Also, a(n) = A050475(n) - 1. - Juri-Stepan Gerasimov, Aug 29 2015
EXAMPLE
Corresponding to the initial terms 2, 3, 5, 7, 13, 17, 19, 31 ... we get the Mersenne primes 2^2 - 1 = 3, 2^3 - 1 = 7, 2^5 - 1 = 31, 127, 8191, 131071, 524287, 2147483647, ... (see A000668).
MATHEMATICA
MersennePrimeExponent[Range[47]] (* Eric W. Weisstein, Jul 17 2017 *)
PROG
(PARI) isA000043(n) = isprime(2^n-1) \\ Michael B. Porter, Oct 28 2009
(PARI) is(n)=my(h=Mod(2, 2^n-1)); for(i=1, n-2, h=2*h^2-1); h==0||n==2 \\ Lucas-Lehmer test for exponent e. - Joerg Arndt, Jan 16 2011, and Charles R Greathouse IV, Jun 05 2013
forprime(e=2, 5000, if(is(e), print1(e, ", "))); /* terms < 5000 */
(Python)
from sympy import isprime, prime
for n in range(1, 100):
if isprime(2**prime(n)-1):
print(prime(n), end=', ') # Stefano Spezia, Dec 06 2018
CROSSREFS
Cf. A000668 (Mersenne primes).
Cf. A028335 (integer lengths of Mersenne primes).
Cf. A000225 (Mersenne numbers).
Cf. A001348 (Mersenne numbers with n prime).
KEYWORD
hard,nonn,nice,core,changed
EXTENSIONS
Also in the sequence: p = 74207281. - Charles R Greathouse IV, Jan 19 2016
Also in the sequence: p = 77232917. - Eric W. Weisstein, Jan 03 2018
Also in the sequence: p = 82589933. - Gord Palameta, Dec 21 2018
a(46) = 42643801 and a(47) = 43112609, whose ordinal positions in the sequence are now confirmed, communicated by Eric W. Weisstein, Apr 12 2018
a(48) = 57885161, whose ordinal position in the sequence is now confirmed, communicated by Benjamin Przybocki, Jan 05 2022
STATUS
approved
a(n) = (2^(2*n + 1) + 1)/3.
(Formerly M2895)
+10
99
1, 3, 11, 43, 171, 683, 2731, 10923, 43691, 174763, 699051, 2796203, 11184811, 44739243, 178956971, 715827883, 2863311531, 11453246123, 45812984491, 183251937963, 733007751851, 2932031007403, 11728124029611, 46912496118443, 187649984473771, 750599937895083
OFFSET
0,2
COMMENTS
Let u(k), v(k), w(k) be the 3 sequences defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)-w(k), v(k+1)=u(k)-v(k)+w(k), w(k+1)=-u(k)+v(k)+w(k); let M(k)=Max(u(k),v(k),w(k)); then a(n)=M(2n)=M(2n-1). - Benoit Cloitre, Mar 25 2002
Also the number of words of length 2n generated by the two letters s and t that reduce to the identity 1 by using the relations ssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the dihedral group D6=C2xD3. - Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com) and John W. Layman, Jul 08 2002
Binomial transform of A025192. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 between two adjacent vertices in the cycle graph C_6. Example: a(1)=3 because in the cycle ABCDEF we have three walks of length 3 between A and B: ABAB, ABCB and AFAB. - Emeric Deutsch, Apr 01 2004
Numbers of the form 1 + Sum_{i=1..m} 2^(2*i-1). - Artur Jasinski, Feb 09 2007
Prime numbers of the form 1+Sum[2^(2n-1)] are in A000979. Numbers x such that 1+Sum[2^(2n-1)] is prime for n=1,2,...,x is A127936. - Artur Jasinski, Feb 09 2007
Related to A024493(6n+1), A131708(6n+3), A024495(6n+5). - Paul Curtz, Mar 27 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
Number of toothpicks in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Feb 28 2011
Numbers whose binary representation is "10" repeated (n-1) times with "11" appended on the end, n >= 1. For example 171 = 10101011 (2). - Omar E. Pol, Nov 22 2012
a(n) is the smallest number for which A072219(a(n)) = 2*n+1. - Ramasamy Chandramouli, Dec 22 2012
An Engel expansion of 2 to the base b := 4/3 as defined in A181565, with the associated series expansion 2 = b + b^2/3 + b^3/(3*11) + b^4/(3*11*43) + .... Cf. A007051. - Peter Bala, Oct 29 2013
The positive integer solution (x,y) of 3*x - 2^n*y = 1, n>=0, with smallest x is (a(n/2), 2) if n is even and (a((n-1)/2), 1) if n is odd. - Wolfdieter Lang, Feb 15 2014
The smallest positive number that requires at least n additions and subtractions of powers of 2 to be formed. See Puzzling StackExchange link. - Alexander Cooke Jul 16 2023
REFERENCES
H. W. Gould, Combinatorial Identities, Morgantown, 1972, (1.77), page 10.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Cecilia Bebeacua, Toufik Mansour, Alexander Postnikov, Simone Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
Greg Bell, Austin Lawson, Neil Pritchard, and Dan Yasaki, On locally infinite Cayley graphs of the integers, arXiv preprint arXiv:1711.00809 [math.GT], 2017. See lambda_2.
Phillip G. Bradford, Efficient Exact Paths For Dyck and semi-Dyck Labeled Path Reachability, arXiv:1802.05239 [cs.DS], 2018.
John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv:1507.04803 [math.CO], 2015.
Ernesto Estrada and José A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176 [math.CO], 2013.
Ernesto Estrada and José A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84.
Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 35.
Sungpyo Hong and Jin Ho Kwak, Regular fourfold coverings with respect to the identity automorphism, J. Graph Theory, 17 (1993), 621-627.
Dmitry Kamenetsky, A magic grasshopper, Puzzling StackExchange, 2023.
Wolfdieter Lang, On Collatz' Words, Sequences and Trees, arXiv preprint arXiv:1404.2710 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.11.7.
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1.
Eric Weisstein's World of Mathematics, Repunit
FORMULA
a(n) = 2*A002450(n) + 1.
From Wolfdieter Lang, Apr 24 2001: (Start)
a(n) = Sum_{m = 0..n} A060920(n, m) = A002450(n+1) - 2*A002450(n).
G.f.: (1-2*x)/(1-5*x+4*x^2). (End)
a(n) = Sum_{k = 0..n} binomial(n+k, 2*k)/2^(k - n).
a(n) = 4*a(n-1) - 1, n > 0.
From Paul Barry, Mar 17 2003: (Start)
a(n) = 1 + 2*Sum_{k = 0..n-1} 4^k;
a(n) = A001045(2n+1). (End)
a(n) = A020988(n-1) + 1 = A039301(n+1) - 1 = A083584(n-1) + 2. - Ralf Stephan, Jun 14 2003
a(0) = 1; a(n+1) = a(n) * 4 - 1. - Regis Decamps (decamps(AT)users.sf.net), Feb 04 2004 (correction to lead index by K. Spage, Aug 20 2014)
a(n) = Sum_{i + j + k = n; 0 <= i, j, k <= n} (n+k)!/i!/j!/(2*k)!. - Benoit Cloitre, Mar 25 2004
a(n) = 5*a(n-1) - 4*a(n-2). - Emeric Deutsch, Apr 01 2004
a(n) = 4^n - A001045(2*n). - Paul Barry, Apr 17 2004
a(n) = 2*(A001045(n))^2 + (A001045(n+1))^2. - Paul Barry, Jul 15 2004
a(n) = left and right terms in M^n * [1 1 1] where M = the 3X3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A002450(n+1) a(n)] E.g. a(3) = 43 since M^n * [1 1 1] = [43 85 43] = [a(3) A002450(4) a(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = A072197(n) - A020988(n). - Creighton Dement, Dec 31 2004
a(n) = A139250(2^n). - Omar E. Pol, Feb 28 2011
a(n) = A193652(2*n+1). - Reinhard Zumkeller, Aug 08 2011
a(n) = Sum_{k = -floor(n/3)..floor(n/3)} binomial(2*n, n+3*k)/2. - Mircea Merca, Jan 28 2012
a(n) = 2^(2*(n+1)) - A072197(n). - Vladimir Pletser, Apr 12 2014
a(n) == 2*n + 1 (mod 3). Indeed, from Regis Decamps' formula (Feb 04 2004) we have a(i+1) - a(i) == -1 (mod 3), i= 0, 1, ..., n - 1. Summing, we have a(n) - 1 == -n (mod 3), and the formula follows. - Vladimir Shevelev, May 13, 20 2015
For n > 0 a(n) = A133494(0) + 2 * (A133494(n) + Sum_{x = 1..n - 1}Sum_{k = 0..x - 1}(binomial(x - 1, k)*(A133494(k+1) + A133494(n-x+k)))). - J. Conrad, Dec 06 2015
a(n) = Sum_{k = 0..2n} (-2)^k == 1 + Sum_{k = 1..n} 2^(2k-1). - Bob Selcoe, Aug 21 2016
E.g.f.: (1 + 2*exp(3*x))*exp(x)/3. - Ilya Gutkovskiy, Aug 21 2016
MAPLE
a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-1 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008, with correction by K. Spage, Aug 20 2014
A007583 := proc(n)
(2^(2*n+1)+1)/3 ;
end proc: # R. J. Mathar, Feb 19 2015
MATHEMATICA
(* From Michael De Vlieger, Aug 22 2016 *)
Table[(2^(2n+1) + 1)/3, {n, 0, 23}]
Table[1 + 2Sum[4^k, {k, 0, n-1}], {n, 0, 23}]
NestList[4# -1 &, 1, 23]
Table[Sum[Binomial[n+k, 2k]/2^(k-n), {k, 0, n}], {n, 0, 23}]
CoefficientList[Series[(1-2x)/(1-5x+4x^2), {x, 0, 23}], x] (* End *)
PROG
(PARI) a(n)=sum(k=-n\3, n\3, binomial(2*n+1, n+1+3*k))
(PARI) a=1; for(n=1, 23, print1(a, ", "); a=bitor(a, 3*a)) \\ K. Spage, Aug 20 2014
(PARI) Vec((1-2*x)/(1-5*x+4*x^2) + O(x^30)) \\ Altug Alkan, Dec 08 2015
(PARI) apply( {A007583(n)=2<<(2*n)\/3}, [0..25]) \\ M. F. Hasler, Nov 30 2021
(Magma) [(2^(2*n+1) + 1)/3: n in [0..30] ]; // Vincenzo Librandi, Apr 28 2011
(Haskell)
a007583 = (`div` 3) . (+ 1) . a004171
-- Reinhard Zumkeller, Jan 09 2013
(Sage) [(2^(2*n+1) + 1)/3 for n in (0..25)] # G. C. Greubel, Dec 25 2019
(GAP) List([0..25], n-> (2^(2*n+1) + 1)/3); # G. C. Greubel, Dec 25 2019
CROSSREFS
Cf. also A006054, A006356, A005578.
Partial sums of A081294.
Cf. location of records in A007302.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Wagstaff numbers: numbers k such that (2^k + 1)/3 is prime.
(Formerly M2413 N0956)
+10
83
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399
OFFSET
1,1
COMMENTS
It is easy to see that the definition implies that k must be an odd prime. - N. J. A. Sloane, Oct 06 2006
The terms from a(32) on only give probable primes as of 2018. Caldwell lists the largest certified primes. - Jens Kruse Andersen, Jan 10 2018
Prime numbers of the form 1+Sum_{i=1..m} 2^(2i-1). - Artur Jasinski, Feb 09 2007
There is a new conjecture stating that a Wagstaff number is prime under the following condition (based on DiGraph cycles under the LLT): Let p be a prime integer > 3, N(p) = 2^p+1 and W(p) = N(p)/3, S(0) = 3/2 (or 1/4) and S(i+1) = S(i)^2 - 2 (mod N(p)). Then W(p) is prime iff S(p-1) == S(0) (mod W(p)). - Tony Reix, Sep 03 2007
As a member of the DUR team (Diepeveen, Underwood, Reix), and thanks to the LLR tool built by Jean Penne, I've found a new and big Wagstaff PRP: (2^4031399+1)/3 is Vrba-Reix PRP! This Wagstaff number has 1,213,572 digits and today is the 3rd biggest PRP ever found. I've done a second verification on a Nehalem core with the PFGW tool. - Tony Reix, Feb 20 2010
13347311 and 13372531 were found to be terms of this sequence (maybe not the next ones) by Ryan Propper in September 2013. - Max Alekseyev, Oct 07 2013
The next term is larger than 10 million. - Gord Palameta, Mar 22 2019
Ryan Propper found another likely term, 15135397, though it only corresponds to a probable prime. - Charles R Greathouse IV, Jul 01 2021
REFERENCES
J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. S. Wagstaff, Jr., personal communication.
LINKS
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
C. Caldwell's The Top Twenty, Wagstaff.
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
Editor's Note, Table of Wagstaff primes sent by D. H. Lehmer (annotated and scanned copy)
J. E. Foster, Problem 174, A solution in primes, Math. Mag., 27 (1954), 156-157.
H. & R. Lifchitz, PRP Top Records.
Henri & Renaud Lifchitz, PRP Records.
Ryan Propper et al., New Wagstaff PRP exponents, mersenneforum.org
PRP top list: PRP top [From Tony Reix, Feb 20 2010]
Tony Reix, Yahoo Primeform Group Message 10184 dd. Feb 20, 2010, reconstruction in html.
Djurre G. Sikkema, Probable primality testing for Wagstaff prime, Bachelor's project mathematics, Univ. Groningen (Netherlands 2024). See p. 32.
S. S. Wagstaff, Jr., The Cunningham Project
Eric Weisstein's World of Mathematics, Repunit
Eric Weisstein's World of Mathematics, Wagstaff Prime
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Wikipedia, Wagstaff prime
FORMULA
a(n) = A107036(n) for n>1. - Alexander Adamchuk, Feb 10 2007
MATHEMATICA
Select[Range[5000], PrimeQ[(2^# + 1)/3] &] (* Michael De Vlieger, Jan 10 2018 *)
Select[Prime[Range[2, 500]], PrimeQ[(2^#+1)/3]&] (* Harvey P. Dale, Jun 13 2022 *)
PROG
(PARI) forprime(p=2, 5000, if(ispseudoprime(2^p\/3), print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a000978 n = a000978_list !! (n-1)
a000978_list = filter ((== 1) . a010051 . a001045) a065091_list
-- Reinhard Zumkeller, Mar 24 2013
(Python)
from gmpy2 import divexact
from sympy import prime, isprime
A000978 = [p for p in (prime(n) for n in range(2, 10**2)) if isprime(divexact(2**p+1, 3))] # Chai Wah Wu, Sep 04 2014
CROSSREFS
Cf. A107036 (indices of prime Jacobsthal numbers).
KEYWORD
nonn,hard,nice,more
EXTENSIONS
a(30) from Kamil Duszenko (kdusz(AT)wp.pl), Feb 03 2003; a(30) was proved prime by Francois Morain with FastECPP. - Tony Reix, Sep 03 2007
a(31)-a(39) from Robert G. Wilson v, Apr 11 2005
a(40) from Vincent Diepeveen (diep(AT)xs4all.nl) added by Alexander Adamchuk, Jun 19 2008
a(41) from Tony Reix, Feb 20 2010
STATUS
approved
Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + k^11 is prime.
+10
27
1, 2, 10, 40, 47, 55, 62, 121, 137, 152, 167, 201, 233, 278, 290, 293, 313, 333, 370, 382, 430, 452, 460, 506, 546, 555, 613, 625, 642, 675, 705, 711, 752, 767, 793, 797, 831, 835, 837, 872, 878, 891, 906, 917, 923, 978, 985, 1005, 1012, 1017, 1018, 1021
OFFSET
1,2
LINKS
MATHEMATICA
Select[Range[4000], PrimeQ[Total[#^Range[1, 11, 2]] + 1] &]
PROG
(Magma) [n: n in [0..1500] | IsPrime(s) where s is 1+&+[n^i: i in [1..11 by 2]]];
(PARI) isok(n) = isprime(1 + n + n^3 + n^5 + n^7 + n^9 + n^11); \\ Michel Marcus, Jun 27 2014
(Sage)
i, n = var('i, n')
[n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i, 0, 5))] # Bruno Berselli, Jun 27 2014
CROSSREFS
Cf. A127936.
Cf. numbers n such that 1+n+n^3 + ... + n^k, with k odd: A006093 (k=1), A049407 (k=3), A124154 (k=5), A124150 (k=7), A124163 (k=9), this sequence (k=11), A124164 (k=13), A244377 (k=15), A244378 (k=17), A124178 (k=19), A244379 (k=21), A124181 (k=23), A244380 (k=25), A124185 (k=27), A244383 (k=29), A124186 (k=31), A244384 (k=33), A124187 (k=35), A244385 (k=37), A124189 (k=39), A244386 (k=41), A124200 (k=43), A244387 (k=45), A124205 (k=47), A244388 (k=49), A124206 (k=51), A244389 (k=53), A124207 (k=55), A244390 (k=57), A124208 (k=59), A244391 (k=61), A124209 (k=63).
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 27 2014
STATUS
approved
Numbers x such that 1 + Sum_{k=1..n} 2^(2k-1) is not prime for n=1,2,...,x.
+10
11
4, 7, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85
OFFSET
1,1
COMMENTS
Numbers x such that 1 + Sum_{k=1..n} 2^(2k-1) is prime for n=1,2,...,x gives A127936.
LINKS
MATHEMATICA
a = {}; Do[If[PrimeQ[1 + Sum[2^(2n - 1), {n, 1, x}]] == False, AppendTo[a, x]], {x, 1, 1000}]; a
PROG
(PARI) isok(x) = !isprime(1+sum(k=1, x, 2^(2*k-1))); \\ Michel Marcus, May 09 2018
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 09 2007
STATUS
approved
Binary expansion of A000979(n).
+10
8
11, 1011, 101011, 1010101011, 101010101011, 1010101010101011, 101010101010101011, 1010101010101010101011, 101010101010101010101010101011, 101010101010101010101010101010101010101011
OFFSET
1,1
LINKS
FORMULA
a(n) = A007088(A000979(n)). - Amiram Eldar, Jul 23 2023
MATHEMATICA
b[n_] := FromDigits[IntegerDigits[n, 2]]; b /@ Select[Table[(2^p + 1)/3, {p, Prime[Range[15]]}], PrimeQ] (* Amiram Eldar, Jul 23 2023 *)
PROG
(Python)
from gmpy2 import divexact
from sympy import prime, isprime
A127962 = [int(bin(p)[2:]) for p in (divexact(2**prime(n)+1, 3) for n in range(2, 10**2)) if isprime(p)] # Chai Wah Wu, Sep 04 2014
KEYWORD
nonn,base
AUTHOR
Artur Jasinski, Feb 09 2007
EXTENSIONS
Edited by N. J. A. Sloane, Jun 11 2007
STATUS
approved
Indices where 2 occurs in A124151.
+10
4
3, 5, 8, 9, 11, 15, 21, 39, 50, 63, 83, 95, 99, 173, 350, 854, 1308, 1769, 2903, 5250, 5345, 5639, 6195, 7239, 21368, 41669, 47684, 58619, 63515, 69468, 70539, 133508, 134993, 187160, 493095
OFFSET
1,1
COMMENTS
Does 2 occur infinitely often in A124151?
The sum in A124151 is 1+n if k=1, and 1+k*(k^(2n)-1)/(k^2-1) if k>1. The indices of A124151(n)=2 are where k=1 is avoided, but where k=2 leads to a prime, i.e., where 1+n is not prime but 1+2*(4^n-1)/3 = (2^(2n+1)+1)/3 is prime. Therefore this sequence here is constructed by taking all n=(A000978(i)-1)/2 (the members of A127936), and eliminating cases with 1+n in A000040. - R. J. Mathar, Feb 03 2010
FORMULA
A127936 \ A006093. - R. J. Mathar, Feb 03 2010
MATHEMATICA
f[n_] := Block[{k = 1}, While[ !PrimeQ[ Sum[k^(2j - 1), {j, n}] + 1] && k < 3, k++ ]; k]; lst = {}; Do[ If[f@n == 2, Print[n]; AppendTo[lst, n]], {n, 9250}]; lst (* Robert G. Wilson v, Dec 17 2006 *)
KEYWORD
nonn,changed
AUTHOR
Artur Jasinski, Dec 14 2006
EXTENSIONS
More terms from Robert G. Wilson v, Dec 17 2006
a(24)-a(35) from R. J. Mathar, Feb 03 2010
STATUS
approved
Number of 1's in A127962(n).
+10
3
2, 3, 4, 6, 7, 9, 10, 12, 16, 22, 31, 40, 51, 64, 84, 96, 100, 157, 174, 351, 855, 1309, 1770, 2904, 5251, 5346, 5640, 6196, 7240, 21369, 41670, 47685, 58620, 63516, 69469, 70540, 133509, 134994, 187161, 493096, 2015700
OFFSET
1,1
FORMULA
a(n) = A000120(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = A007953(A127962(n)). - Amiram Eldar, Jul 23 2023
MATHEMATICA
b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d (* Artur Jasinski, Feb 09 2007 *)
DigitCount[#, 2, 1]& /@ Select[Table[(2^p + 1)/3, {p, Prime[Range[300]]}], PrimeQ] (* Amiram Eldar, Jul 23 2023 *)
KEYWORD
nonn,base,more
AUTHOR
Artur Jasinski, Feb 09 2007
EXTENSIONS
a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Jul 23 2023
STATUS
approved
Number of 0's in A127962(n).
+10
3
0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 29, 38, 49, 62, 82, 94, 98, 155, 172, 349, 853, 1307, 1768, 2902, 5249, 5344, 5638, 6194, 7238
OFFSET
1,3
COMMENTS
Apparently n such that (2^(2*n+3)+1)/3 is prime. - James R. Buddenhagen, Apr 14 2011
FORMULA
a(n) = A023416(A000979(n)). - Michel Marcus, Nov 07 2013
MATHEMATICA
b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]], {x, 1, Length[a]}]; d (*Artur Jasinski*)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 09 2007
EXTENSIONS
a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
STATUS
approved
Number of bits in A127962(n).
+10
3
2, 4, 6, 10, 12, 16, 18, 22, 30, 42, 60, 78, 100, 126, 166, 190, 198, 312, 346, 700, 1708, 2616, 3538, 5806, 10500, 10690, 11278, 12390, 14478
OFFSET
1,1
COMMENTS
Equals A127964(n) + A127963(n).
FORMULA
a(n) = 1 + floor(log_2(A000979(n))) = 1 + floor(log_2(2^A000978(n)+1) - A020857) = A000978(n) - 1. - R. J. Mathar, Feb 01 2008
MATHEMATICA
b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]+DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d (* Artur Jasinski, Feb 09 2007 *)
KEYWORD
nonn,base
AUTHOR
Artur Jasinski, Feb 09 2007
EXTENSIONS
a(22)-a(29) from Vincenzo Librandi, Mar 30 2012
STATUS
approved

Search completed in 0.018 seconds