login
Search: a105037 -id:a105037
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.
+10
10
1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267, 1105706761003, 5132364345954
OFFSET
1,2
COMMENTS
The original version of this question was as follows: Let a(1) = 1, a(2) = 2, a(3) = 11, a(4) = 19; for n = 1..4 let b(n) = sqrt(60 a(n)^2 + 60 a(n) + 1); for n >= 5 let a(n) = a(n-4) + b(n-2), b(n) = sqrt(60 a(n)^2 + 60 a(n) +1). Bhanu and Deshpande ask for a proof that a(n) and b(n) are always integers. The b(n) sequence is A103201.
This sequence is also the interleaving of two sequences c and d that can be extended backwards: c(0) = c(1) = 0, c(n) = sqrt(60 c(n-1)^2 + 60 c(n-1) +1) + c(n-2) giving 0,0,1,11,90,712,5609,... d(0) = 1, d(1) = 0, d(n) = sqrt(60 d(n-1)^2 + 60 d(n-1) +1) + d(n-2) giving 1,0,2,19,153,1208,9514,... and interleaved: 0,1,0,0,1,2,11,19,90,153,712,1208,5609,9514,... lim_{n->infinity} a(n)/a(n-2) = 1/(4 - sqrt(15)), (1/(4-sqrt(15)))^n approaches an integer as n -> infinity. - Gerald McGarvey, Mar 29 2005
REFERENCES
K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.
FORMULA
Comments from Pierre CAMI and Gerald McGarvey, Apr 20 2005: (Start)
Sequence satisfies a(0)=0, a(1)=1, a(2)=2, a(3)=11; for n > 3, a(n) = 8*a(n-2) - a(n-4) + 3.
G.f.: -x*(1 + x + x^2) / ( (x - 1)*(x^4 - 8*x^2 + 1) ). Note that the 3 = the sum of the coefficients in the numerator of the g.f., 8 appears in the denominator of the g.f. and 8 = 2*3 + 2. Similar relationships hold for other series defined as nonnegative n such that m*n^2 + m*n + 1 is a square, here m=60. Cf. A001652, A001570, A049629, A105038, A105040, A104240, A077288, A105036, A105037. (End)
a(2n) = (A105426(n)-1)/2, a(2n+1) = (A001090(n+2) - 5*A001090(n+1) - 1)/2. - Ralf Stephan, May 18 2007
a(1)=1, a(2)=2, a(3)=11, a(4)=19, a(5)=90, a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Sep 27 2011
MAPLE
a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n], n=1..31); # Emeric Deutsch, Apr 13 2005
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==2, a[3]==11, a[4]==19, a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]}, a[n], {n, 40}] (* or *) LinearRecurrence[ {1, 8, -8, -1, 1}, {1, 2, 11, 19, 90}, 40] (* Harvey P. Dale, Sep 27 2011 *)
CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)
PROG
(Magma) I:=[1, 2, 11, 19, 90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Sep 28 2011
CROSSREFS
Cf. A103201, A177187 (first differences).
KEYWORD
nonn
AUTHOR
K. S. Bhanu and M. N. Deshpande, Mar 24 2005
EXTENSIONS
More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005
STATUS
approved
Nonnegative n such that 6*n^2 + 6*n + 1 is a square.
+10
10
0, 4, 44, 440, 4360, 43164, 427284, 4229680, 41869520, 414465524, 4102785724, 40613391720, 402031131480, 3979697923084, 39394948099364, 389969783070560, 3860302882606240, 38213059042991844, 378270287547312204, 3744489816430130200, 37066627876753989800
OFFSET
0,2
LINKS
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
FORMULA
G.f.: 4*x/(1-11*x+11*x^2-x^3).
a(0)=0, a(1)=4, a(2)=44, a(n)=11*a(n-1)-11*a(n-2)+a(n-3). - Harvey P. Dale, Sep 29 2013
a(n) = (-6-(5-2*sqrt(6))^n*(-3+sqrt(6))+(3+sqrt(6))*(5+2*sqrt(6))^n)/12. - Colin Barker, Mar 05 2016
a(n) = (A072256(n+1) - 1)/2.
MATHEMATICA
CoefficientList[Series[4x/(1-11x+11x^2-x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{11, -11, 1}, {0, 4, 44}, 30] (* Harvey P. Dale, Sep 29 2013 *)
PROG
(PARI) for(n=0, 427284, if(issquare(6*n*(n+1)+1), print1(n, ", ")))
(PARI) Vec(4*x/(1-11*x+11*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2012
KEYWORD
nonn,easy
AUTHOR
Gerald McGarvey, Apr 03 2005
EXTENSIONS
More terms from Vladeta Jovovic, Apr 05 2005
Incorrect conjectures deleted by N. J. A. Sloane, Nov 24 2010
STATUS
approved
a(n) = 26*a(n-2) - a(n-4) + 12, with a(0) = 0, a(1) = 4, a(2) = 8, a(3) = 116.
+10
3
0, 4, 8, 116, 220, 3024, 5724, 78520, 148616, 2038508, 3858304, 52922700, 100167300, 1373951704, 2600491508, 35669821616, 67512611920, 926041410324, 1752727418424, 24041406846820, 45503400267116, 624150536607008
OFFSET
0,2
COMMENTS
It appears this sequence gives all the nonnegative m such that 42*m^2 + 42*m + 1 is a square.
FORMULA
a(n) = 26*a(n-2) - a(n-4) + 12, for n > 3.
From R. J. Mathar, Sep 13 2009: (Start)
G.f.: 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)).
a(n) = a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5). (End)
From Ralf Stephan, Nov 15 2010: (Start)
a(2n) = (1/2)*(A097309(n+2) - 9*A097309(n+1) - 1).
a(2n+1) = (1/2)*(9*A097309(n+2) - A097309(n+1) - 1). (End)
MATHEMATICA
LinearRecurrence[{1, 26, -26, -1, 1}, {0, 4, 8, 116, 220}, 30] (* Harvey P. Dale, Mar 25 2013 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)) )); // G. C. Greubel, Mar 15 2023
(SageMath)
@CachedFunction
def a(n): # a = A105036
if (n<5): return (0, 4, 8, 116, 220)[n]
else: return a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5)
[a(n) for n in range(41)] # G. C. Greubel, Mar 15 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerald McGarvey, Apr 03 2005
STATUS
approved

Search completed in 0.004 seconds