login
Search: a097889 -id:a097889
     Sort: relevance | references | number | modified | created      Format: long | short | data
Intersection of A046346 (numbers that are divisible by the sum of their prime factors, counted with multiplicity) and A097889 (numbers that are products of at least two consecutive primes).
+20
1
30, 105, 15015, 9699690, 37182145, 215656441, 955049953, 33426748355, 247357937827, 1448810778701, 3710369067405, 304250263527210, 102481630431415235, 1086305282573001491, 261682369333342226303, 37420578814667938361329, 241532826894674874877669
OFFSET
1,1
COMMENTS
Alladi and Erdős ask if this sequence is infinite and give 3 terms: 2*3*5, 2*3*5*7*11*13*17*19 and 2*3*5*7*11*13*17*19*23*29*31*37*41, that is, a(1), a(4) and a(12).
This sequence contains A159578(n) for all values of n > 1. - Altug Alkan, Jan 07 2016
LINKS
K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294.
PROG
(PARI) sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]); }
list(lim)= {my(v=List(), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); if (! (t % sopfr(t)), listput(v, t)); p=nextprime(p+1))); vecsort(Vec(v)); } \\ adapted from A097889
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 07 2016
EXTENSIONS
a(13)-a(17) from Hiroaki Yamanouchi, Jan 12 2016
STATUS
approved
Products of 2 successive primes.
(Formerly M4110)
+10
142
6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, 2021, 2491, 3127, 3599, 4087, 4757, 5183, 5767, 6557, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 14351, 16637, 17947, 19043, 20711, 22499, 23707, 25591, 27221, 28891, 30967, 32399, 34571, 36863
OFFSET
1,1
COMMENTS
The Huntley reference would suggest prefixing the sequence with an initial 4 - Enoch Haga. [But that would conflict with the definition! - N. J. A. Sloane, Oct 13 2009]
Sequence appears to coincide with the sequence of numbers n such that the largest prime < sqrt(n) and the smallest prime > sqrt(n) divide n. - Benoit Cloitre, Apr 04 2002
This is true: p(n) < [ sqrt(a(n)) = sqrt(p(n)*p(n+1)) ] < p(n+1) by definition. - Jon Perry, Oct 02 2013
a(n+1) = smallest number such that gcd(a(n), a(n+1)) = prime(n+1). - Alexandre Wajnberg and Ray Chandler, Oct 14 2005
Also the area of rectangles whose side lengths are consecutive primes. E.g., the consecutive primes 7,11 produce a 7 X 11 unit rectangle which has area 77 square units. - Cino Hilliard, Jul 28 2006
a(n) = A001358(A172348(n)); A046301(n) = lcm(a(n), a(n+1)); A065091(n) = gcd(a(n), a(n+1)); A066116(n+2) = a(n+1)*a(n); A109805(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 13 2011
See A209329 for the sum of the reciprocals. - M. F. Hasler, Jan 22 2013
A078898(a(n)) = 3. - Reinhard Zumkeller, Apr 06 2015
REFERENCES
H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
A. Bernoff and R. Pennington, Problems Drive 1984, Archimedeans Problems Drive, Eureka, 45 (1985), 22-25, 50. (Annotated scanned copy)
C. Cobeli and A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014.
FORMULA
A209329 = Sum_{n>=2} 1/a(n). - M. F. Hasler, Jan 22 2013
a(n) = A000040(n) * A000040(n+1). - Alois P. Heinz, Jan 02 2021
MAPLE
a:= n-> (p-> p(n)*p(n+1))(ithprime):
seq(a(n), n=1..43); # Alois P. Heinz, Jan 02 2021
MATHEMATICA
Table[ Prime[n] Prime[n + 1], {n, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
Times@@@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Oct 15 2011 *)
PROG
(PARI) g(n) = for(x=1, n, print1(prime(x)*prime(x+1)", ")) \\ Cino Hilliard, Jul 28 2006
(PARI) is(n)=my(p=precprime(sqrtint(n))); p>1 && n%p==0 && isprime(n/p) && nextprime(p+1)==n/p \\ Charles R Greathouse IV, Jun 04 2014
(MuPAD) ithprime(i)*ithprime(i+1) $ i = 1..41 // Zerinvary Lajos, Feb 26 2007
(Magma) [NthPrime(n)*NthPrime(n+1): n in [1..41]]; // Bruno Berselli, Feb 24 2011
(Haskell)
a006094 n = a006094_list !! (n-1)
a006094_list = zipWith (*) a000040_list a065091_list
-- Reinhard Zumkeller, Mar 13 2011
(Haskell)
a006094_list = pr a000040_list
where pr (n:m:tail) = n*m : pr (m:tail)
pr _ = []
(Python)
from sympy import prime, primerange
def aupton(nn):
alst, prevp = [], 2
for p in primerange(3, prime(nn+1)+1): alst.append(prevp*p); prevp = p
return alst
print(aupton(43)) # Michael S. Branicky, Jun 15 2021
CROSSREFS
Subset of the squarefree semiprimes, A006881.
Subsequence of A256617 and A097889.
KEYWORD
nonn,easy,nice
STATUS
approved
Product of any number of consecutive primes; squarefree numbers with no gaps in their prime factorization.
+10
35
1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233
OFFSET
1,2
COMMENTS
A073484(a(n)) = 0 and A073483(a(n)) = 1;
See A097889 for composite terms. - Reinhard Zumkeller, Mar 30 2010
A169829 is a subsequence. - Reinhard Zumkeller, May 31 2010
a(A192280(n)) = 1: complement of A193166.
Also fixed points of A053590: a(n) = A053590(a(n)). - Reinhard Zumkeller, May 28 2012
The Heinz numbers of the partitions into distinct consecutive integers. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} prime(p_j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: (i) 15 (= 3*5) is in the sequence because it is the Heinz number of the partition [2,3]; (ii) 10 (= 2*5) is not in the sequence because it is the Heinz number of the partition [1,3]. - Emeric Deutsch, Oct 02 2015
Except for the term 1, each term can uniquely represented as A002110(k)/A002110(m) for k > m >= 0; 1 = A002110(k)/A002110(k) for all k. - Michel Marcus and Jianing Song, Jun 19 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Oct 24 2012
EXAMPLE
105 is a term, as 105 = 3*5*7 with consecutive prime factors.
MAPLE
isA073485 := proc(n)
local plist, p, i ;
plist := sort(convert(numtheory[factorset](n), list)) ;
for i from 1 to nops(plist) do
p := op(i, plist) ;
if modp(n, p^2) = 0 then
return false;
end if;
if i > 1 then
if nextprime(op(i-1, plist)) <> p then
return false;
end if;
end if;
end do:
true;
end proc:
for n from 1 to 1000 do
if isA073485(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Jan 12 2016
# second Maple program:
q:= proc(n) uses numtheory; n=1 or issqrfree(n) and (s->
nops(s)=1+pi(max(s))-pi(min(s)))(factorset(n))
end:
select(q, [$1..288])[]; # Alois P. Heinz, Jan 27 2022
MATHEMATICA
f[n_] := FoldList[ Times, 1, Prime[ Range[n, n + 3]]]; lst = {}; k = 1; While[k < 55, AppendTo[lst, f@k]; k++ ]; Take[ Union@ Flatten@ lst, 65] (* Robert G. Wilson v, Jun 11 2010 *)
PROG
(Haskell)
a073485 n = a073485_list !! (n-1)
a073485_list = filter ((== 1) . a192280) [1..]
-- Reinhard Zumkeller, May 28 2012, Aug 26 2011
(PARI) list(lim)=my(v=List(primes(primepi(lim))), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); listput(v, t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012
CROSSREFS
Complement: A193166.
Intersection of A005117 and A073491.
Subsequence of A277417.
Cf. A000040, A006094, A002110, A097889, A169829 (subsequences).
Cf. A096334.
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Aug 03 2002
EXTENSIONS
Alternative description added to the name by Antti Karttunen, Oct 29 2016
STATUS
approved
Sum of two or more consecutive prime numbers.
+10
28
5, 8, 10, 12, 15, 17, 18, 23, 24, 26, 28, 30, 31, 36, 39, 41, 42, 48, 49, 52, 53, 56, 58, 59, 60, 67, 68, 71, 72, 75, 77, 78, 83, 84, 88, 90, 95, 97, 98, 100, 101, 102, 109, 112, 119, 120, 121, 124, 127, 128, 129, 131, 132, 138, 139, 143, 144, 150, 152, 155, 156, 158, 159, 160, 161, 162
OFFSET
1,1
LINKS
Patrick De Geest, WONplate 122
Carlos Rivera, Puzzle 46. Primes expressible as sum of consecutive primes in K ways, The Prime Puzzles and Problems Connection.
Eric Weisstein's World of Mathematics, Prime Sums
EXAMPLE
E.g., 5 = (2 + 3) or (#2,2).
2+3 = 5, 3+5 = 8, 2+3+5 = 10, 7+5 = 12, 3+5+7 = 15, etc.
MAPLE
# uses code of A084143
isA050936 := proc(n::integer)
if A084143(n) >= 1 then
true;
else
false;
end if;
end proc:
for n from 1 to 300 do
if isA050936(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Aug 19 2020
MATHEMATICA
lst={}; Do[p=Prime[n]; Do[p=p+Prime[k]; AppendTo[lst, p], {k, n+1, 2*10^2}], {n, 2*10^2}]; Take[Union[lst], 10^2] (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
f[n_] := Block[{len = PrimePi@ n}, p = Prime@ Range@ len; Count[ Flatten[ Table[ p[[i ;; j]], {i, len}, {j, i+1, len}], 1], q_ /; Total@ q == n]]; Select[ Range@ 150, f@ # > 0 &] (* Or quicker for a larger range *)
lmt = 150; p = Prime@ Range@ PrimePi@ lmt; t = Table[0, {lmt}]; Do[s = 0; j = i+1; While[s = s + p[[j]]; s <= lmt, t[[s]]++; j++], {i, Length@ p}]; Select[ Range@ lmt, t[[#]] > 0 &] (* Robert G. Wilson v *)
Module[{nn=70, prs}, prs=Prime[Range[nn]]; Take[Union[Flatten[Table[Total/@ Partition[prs, i, 1], {i, 2, nn}]]], nn]] (* Harvey P. Dale, Nov 13 2013 *)
PROG
(Haskell)
import Data.Set (empty, findMin, deleteMin, insert)
import qualified Data.Set as Set (null)
a050936 n = a050936_list !! (n-1)
a050936_list = f empty [2] 2 $ tail a000040_list where
f s bs c (p:ps)
| Set.null s || head bs <= m = f (foldl (flip insert) s bs') bs' p ps
| otherwise = m : f (deleteMin s) bs c (p:ps)
where m = findMin s
bs' = map (+ p) (c : bs)
-- Reinhard Zumkeller, Aug 26 2011
(PARI) is(n)=my(v, m=1, t); while(1, v=vector(m++); v[m\2]=precprime(n\m); for(i=m\2+1, m, v[i]=nextprime(v[i-1]+1)); forstep(i=m\2-1, 1, -1, v[i]=precprime(v[i+1]-1)); if(v[1]==0, return(0)); t=vecsum(v); if(t==n, return(1)); if(t>n, while(t>n, t-=v[m]; v=concat(precprime(v[1]-1), v[1..m-1]); t+=v[1]), while(t<n, t-=v[1]; v=concat(v[2..m], nextprime(v[m]+1)); t+=v[m])); if(v[1]==0, return(0)); if(t==n, return(1))) \\ Charles R Greathouse IV, May 05 2016
(PARI) list(lim)=my(v=List(), s, n=1, p); while(1, p=2; s=vecsum(primes(n++)); if(s>lim, return(Set(v))); listput(v, s); forprime(q=prime(n+1), , s+=q-p; if(s>lim, break); listput(v, s); p=nextprime(p+1))); \\ Charles R Greathouse IV, Nov 24 2021
CROSSREFS
Subsequence of A034707.
A084143(a(n)) > 0, complement of A087072.
KEYWORD
nice,nonn,easy
AUTHOR
G. L. Honaker, Jr., Dec 31 1999
EXTENSIONS
More terms from David W. Wilson, Jan 13 2000
STATUS
approved
Numbers, other than prime powers, whose distinct prime factors are consecutive primes.
+10
20
6, 12, 15, 18, 24, 30, 35, 36, 45, 48, 54, 60, 72, 75, 77, 90, 96, 105, 108, 120, 135, 143, 144, 150, 162, 175, 180, 192, 210, 216, 221, 225, 240, 245, 270, 288, 300, 315, 323, 324, 360, 375, 384, 385, 405, 420, 432, 437, 450, 480, 486
OFFSET
1,1
COMMENTS
Numbers whose squarefree kernel (A007947) is the product of 2 or more consecutive primes. - Peter Munn, May 27 2023
LINKS
FORMULA
{a(n) : n >= 1} = {k >= 1 : A007947(k) is in A097889}. - Peter Munn, May 29 2023
EXAMPLE
75 is included because 75 = 3 * 5^2 and 3 and 5 are consecutive primes.
MATHEMATICA
Select[Range[2, 500], And[! PrimePowerQ@ #, Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}] &] (* Michael De Vlieger, Sep 24 2017 *)
PROG
(PARI) { n=0; for (m=2, 10^9, f=factor(m); b=1; if (matsize(f)[1] == 1, next); for (i=2, matsize(f)[1], if (primepi(f[i, 1]) - primepi(f[i - 1, 1]) > 1, b=0; break)); if (b, write("b066312.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 10 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 01 2002
EXTENSIONS
OFFSET changed from 0,1 to 1,1 by Harry J. Smith, Feb 10 2010
Name edited by Peter Munn, May 29 2023
STATUS
approved
Numbers that are the products of 2 or more consecutive integers.
+10
17
0, 2, 6, 12, 20, 24, 30, 42, 56, 60, 72, 90, 110, 120, 132, 156, 182, 210, 240, 272, 306, 336, 342, 360, 380, 420, 462, 504, 506, 552, 600, 650, 702, 720, 756, 812, 840, 870, 930, 990, 992, 1056, 1122, 1190, 1260, 1320, 1332, 1406, 1482, 1560, 1640, 1680
OFFSET
1,2
COMMENTS
Erdős and Selfridge proved that, apart from the first term, these are never perfect powers (A001597). - T. D. Noe, Oct 13 2002
Numbers of the form x!/y! with y+1 < x. - Reinhard Zumkeller, Feb 20 2008
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T.D. Noe)
P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois Jour. Math. 19 (1975), 292-301.
FORMULA
a(n) = A000142(A137911(n))/A000142(A137912(n)-1) for n>1. - Reinhard Zumkeller, Feb 27 2008
Since the oblong numbers (A002378) have relative density of 100%, we have a(n) ~ (n-1) n ~ n^2. - Daniel Forgues, Mar 26 2012
a(n) = n^2 - 2*n^(5/3) + O(n^(4/3)). - Charles R Greathouse IV, Aug 27 2013
EXAMPLE
30 is in the sequence as 30 = 5*6 = 5*(5+1). - David A. Corneth, Oct 19 2021
MATHEMATICA
maxNum = 1700; lst = {}; For[i = 1, i <= Sqrt[maxNum], i++, j = i + 1; prod = i*j; While[prod < maxNum, AppendTo[lst, prod]; j++; prod *= j]]; lst = Union[lst]
PROG
(Python)
import heapq
from sympy import sieve
def aupton(terms, verbose=False):
p = 6; h = [(p, 2, 3)]; nextcount = 4; aset = {0, 2}
while len(aset) < terms:
(v, s, l) = heapq.heappop(h)
aset.add(v)
if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i]")
if v >= p:
p *= nextcount
heapq.heappush(h, (p, 2, nextcount))
nextcount += 1
v //= s; s += 1; l += 1; v *= l
heapq.heappush(h, (v, s, l))
return sorted(aset)
print(aupton(52)) # Michael S. Branicky, Oct 19 2021
(PARI) list(lim)=my(v=List([0]), P, k=1, t); while(1, k++; P=binomial('n+k-1, k)*k!; if(subst(P, 'n, 1)>lim, break); for(n=1, lim, t=eval(P); if(t>lim, next(2)); listput(v, t))); Set(v) \\ Charles R Greathouse IV, Nov 16 2021
KEYWORD
easy,nonn,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2000
More terms from Reinhard Zumkeller, Feb 27 2008
Incorrect program removed by David A. Corneth, Oct 19 2021
STATUS
approved
Number of prime gaps in factorization of n.
+10
17
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0
OFFSET
1,110
COMMENTS
A137723(n) is the smallest number of the first occurring set of exactly n consecutive numbers with at least one prime gap in their factorization: a(A137723(n)+k)>0 for 0<=k<n and a(A137723(n)-1)=a(A137723(n)+n)=0. - Reinhard Zumkeller, Feb 09 2008
LINKS
FORMULA
a(n) = A073484(A007947(n)).
a(A000040(n))=0; a(A000961(n))=0; a(A006094(n))=0; a(A002110(n))=0; a(A073485(n))=0.
a(A073486(n))>0; a(A073487(n)) = 1; a(A073488(n))=2; a(A073489(n))=3.
a(n)=0 iff A073483(n) = 1.
a(A097889(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
0 <= a(m*n) <= a(m) + a(n) + 1. A137794(n) = 0^a(n). - Reinhard Zumkeller, Feb 11 2008
EXAMPLE
84 = 2*2*3*7 with one gap between 3 and 7, therefore a(84) = 1;
110 = 2*5*11 with two gaps: between 2 and 5 and between 5 and 11, therefore a(110) = 2.
MAPLE
A073490 := proc(n)
local a, plist ;
plist := sort(convert(numtheory[factorset](n), list)) ;
a := 0 ;
for i from 2 to nops(plist) do
if op(i, plist) <> nextprime(op(i-1, plist)) then
a := a+1 ;
end if;
end do:
a;
end proc:
seq(A073490(n), n=1..110) ; # R. J. Mathar, Oct 27 2019
MATHEMATICA
gaps[n_Integer/; n>0]:=If[n===1, 0, Complement[Prime[PrimePi[Rest[ # ]]-1], # ]&[First/@FactorInteger[n]]]; Table[Length[gaps[n]], {n, 1, 105}] (Wouter Meeussen, Oct 30 2004)
pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Table[Total[pa @@@ Partition[First /@ FactorInteger[n], 2, 1]], {n, 120}] (* Jayanta Basu, Jul 01 2013 *)
PROG
(Haskell)
a073490 1 = 0
a073490 n = length $ filter (> 1) $ zipWith (-) (tail ips) ips
where ips = map a049084 $ a027748_row n
-- Reinhard Zumkeller, Jul 04 2012
(Python)
from sympy import primefactors, nextprime
def a(n):
pf = primefactors(n)
return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:]))
print([a(n) for n in range(1, 121)]) # Michael S. Branicky, Oct 14 2021
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Aug 03 2002
EXTENSIONS
More terms from Franklin T. Adams-Watters, May 19 2006
STATUS
approved
Numbers which are the product of at least two consecutive odd numbers > 1.
+10
2
15, 35, 63, 99, 105, 143, 195, 255, 315, 323, 399, 483, 575, 675, 693, 783, 899, 945, 1023, 1155, 1287, 1295, 1443, 1599, 1763, 1935, 2115, 2145, 2303, 2499, 2703, 2915, 3135, 3315, 3363, 3465, 3599, 3843, 4095, 4355, 4623, 4845, 4899, 5183, 5475, 5775, 6083
OFFSET
1,1
LINKS
EXAMPLE
. | | ----- Factorizations into ... --------------
. n | a(n) | prime powers | consecutive odd numbers
. ----+-------+--------------------+--------------------------
. 1 | 15 | 3 * 5 | 3 * 5
. 2 | 35 | 5 * 7 | 5 * 7
. 3 | 63 | 3^2 * 7 | 7 * 9
. 4 | 99 | 3^2 * 11 | 9 * 11
. 5 | 105 | 3 * 5 * 7 | 3 * 5 * 7
. 6 | 143 | 11 * 13 | 11 * 13
. 7 | 195 | 3 * 5 * 13 | 13 * 15
. 8 | 255 | 3 * 5 * 17 | 15 * 17
. 9 | 315 | 3^2 * 5 * 7 | 5 * 7 * 9
. 10 | 323 | 17 * 19 | 17 * 19
. 11 | 399 | 3 * 7 * 19 | 19 * 21
. 12 | 483 | 3 * 7 * 23 | 21 * 23
. 13 | 575 | 5^2 * 23 | 23 * 25
. 14 | 675 | 3^3 * 5^2 | 25 * 27
. 15 | 693 | 3^2 * 7 * 11 | 7 * 9 * 11
. 16 | 783 | 3^3 * 29 | 27 * 29
. 17 | 899 | 29 * 31 | 29 * 31
. 18 | 945 | 3^3 * 5 * 7 | 3 * 5 * 7 * 9
. 19 | 1023 | 3 * 11 * 31 | 31 * 33
. 20 | 1155 | 3 * 5 * 7 * 11 | 33 * 35
. 21 | 1287 | 3^2 * 11 * 13 | 9 * 11 * 13
. 22 | 1295 | 5 * 7 * 37 | 35 * 37
. 23 | 1443 | 3 * 13 * 37 | 37 * 39
. 24 | 1599 | 3 * 13 * 41 | 39 * 41
. 25 | 1763 | 41 * 43 | 41 * 43
. 26 | 1935 | 3^2 * 5 * 43 | 43 * 45
. 27 | 2115 | 3^2 * 5 * 47 | 45 * 47
. 28 | 2145 | 3 * 5 * 11 * 13 | 11 * 13 * 15
. 29 | 2303 | 7^2 * 47 | 47 * 49
. 30 | 2499 | 3 * 7^2 * 17 | 49 * 51 .
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a257836 n = a257836_list !! (n-1)
a257836_list = f $ singleton (15, 3, 5) where
f s = y : f (insert (w, u, v') $ insert (w `div` u, u + 2, v') s')
where w = y * v'; v' = v + 2
((y, u, v), s') = deleteFindMin s
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 12 2015
STATUS
approved
Numbers that are products of at least three consecutive primes.
+10
2
30, 105, 210, 385, 1001, 1155, 2310, 2431, 4199, 5005, 7429, 12673, 15015, 17017, 20677, 30030, 33263, 46189, 47027, 65231, 82861, 85085, 96577, 107113, 146969, 190747, 215441, 241133, 255255, 290177, 323323, 347261, 392863, 409457, 478661, 510510, 583573
OFFSET
1,1
LINKS
EXAMPLE
a(5) = 1001 = 7 * 11 * 13;
a(6) = 1155 = 3 * 5 * 7 * 11;
a(7) = 2310 = 2 * 3 * 5 * 7 * 11;
a(8) = 2431 = 11 * 13 * 17.
MATHEMATICA
Select[Module[{nn=1000}, Flatten[Table[Times@@@Partition[Prime[Range[nn]], d, 1], {d, 3, 7}]]]//Union, #<10^7&] (* Harvey P. Dale, Aug 04 2024 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a257891 n = a257891_list !! (n-1)
a257891_list = f $ singleton (30, 2, 5) where
f s = y : f (insert (w, p, q') $ insert (w `div` p, a151800 p, q') s')
where w = y * q'; q' = a151800 q
((y, p, q), s') = deleteFindMin s
CROSSREFS
Cf. A151800, A097889, A000977, A046301 (subsequence).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 12 2015
STATUS
approved
Numbers that can be written as a product of two or more consecutive primorial numbers.
+10
2
2, 12, 180, 360, 6300, 37800, 75600, 485100, 14553000, 69369300, 87318000, 174636000, 14567553000, 15330615300, 437026590000, 2622159540000, 4951788741900, 5244319080000, 35413721343000, 2163931680210300, 7436881482030000, 148702215919257000, 223106444460900000
OFFSET
1,1
LINKS
EXAMPLE
2 = prime(0)# * prime(1)#;
12 = prime(1)# * prime(2)#;
180 = prime(2)# * prime(3)#;
360 = prime(1)# * prime(2)# * prime(3)#;
6300 = prime(3)# * prime(4)#,
where prime(k)# is the product of the first k primes.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 17 2020
STATUS
approved

Search completed in 0.015 seconds