login
Search: a092314 -id:a092314
     Sort: relevance | references | number | modified | created      Format: long | short | data
Spt function: total number of smallest parts (counted with multiplicity) in all partitions of n.
+10
65
1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589, 801, 1048, 1407, 1820, 2399, 3087, 3998, 5092, 6545, 8263, 10486, 13165, 16562, 20630, 25773, 31897, 39546, 48692, 59960, 73423, 89937, 109553, 133439, 161840, 196168, 236843, 285816, 343667, 412950, 494702, 592063, 706671
OFFSET
1,2
COMMENTS
Row sums of triangle A220504. - Omar E. Pol, Jan 19 2013
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 550 terms from Joerg Arndt)
F. G. Garvan, Table of a(n) for n = 1..10000 (Coefficients of Andrews spt-function)
G. E. Andrews, The number of smallest parts in the partitions of n, Journal für die reine und angewandte Mathematik, Volume 2008 Issue 624, 133-142.
Scott Ahlgren, Nickolas Andersen, Euler-like recurrences for smallest parts functions, arXiv:1402.5366
George E. Andrews, Song Heng Chan and Byungchan Kim, The Odd Moments of Ranks and Cranks, Journal of Combinatorial Theory, Series A, Volume 120, Issue 1, January 2013, Pages 77-91. - From N. J. A. Sloane, Sep 04 2012
G. E. Andrews, F. G. Garvan, and J. Liang, Combinatorial interpretation of congruences for the spt-function
William Y.C. Chen, The spt-Function of Andrews, arXiv:1707.04369 [math.CO], Jul 14 2017.
A. Folsom and K. Ono, The spt-function of Andrews, PNAS, December 23 2008, 105 (51) 20152-20156.
F. G. Garvan, Congruences for Andrews' spt-function modulo powers of 5, 7 and 13, arXiv:1011.1955 [math.NT], Nov 9 2010.
F. G. Garvan, Higher Order Spt-functions, Adv. Math. 228 (2011), no. 1, 241-265. - From N. J. A. Sloane, Jan 02 2013
M. H. Mertens, K. Ono, L. Rolen, Mock modular Eisenstein series with Nebentypus, arXiv:1906.07410 [math.NT], 2019.
K. Ono, Congruences for the Andrews spt-function, PNAS, December 21 2010, 108 (2) 473-476.
Wikipedia, Spt function
FORMULA
G.f.: Sum_{n>=1} x^n/(1-x^n) * Product_{k>=n} 1/(1-x^k).
a(n) = A000070(n-1) + A195820(n). - Omar E. Pol, Oct 19 2011
a(n) = n*p(n) - N_2(n)/2 = n*A000041(n) - A220908(n)/2 = A066186(n) - A220907(n) = (A220909(n) - A220908(n))/2 = A211982(n)/2 (from Andrews's paper and Garvan's paper). - Omar E. Pol, Jan 03 2013
a(n) = A000041(n) + A000070(n-2) + A220479(n), n >= 2. - Omar E. Pol, Feb 16 2013
Asymptotics (Bringmann-Mahlburg, 2009): a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*sqrt(8*n)) ~ sqrt(6*n)*A000041(n)/Pi. - Vaclav Kotesovec, Jul 30 2017
EXAMPLE
Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]. 1 appears 4 times in the first, 1 twice in the second, 2 twice in the third, etc.; thus a(4)=4+2+2+1+1=10.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, n,
`if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n, n):
seq(a(n), n=1..60); # Alois P. Heinz, Jan 16 2013
MATHEMATICA
terms = 47; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest (* Jean-François Alcover, Jan 17 2013 *)
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
gf = sum(n=1, N, x^n/(1-x^n) * prod(k=n, N, 1/(1-x^k) ) );
v = Vec(gf)
/* Joerg Arndt, Jan 12 2013 */
CROSSREFS
For higher-order spt functions see A221140-A221144.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved
Total number of smallest parts in all partitions of n into odd parts.
+10
16
1, 2, 4, 5, 8, 12, 15, 20, 29, 36, 46, 61, 74, 95, 122, 145, 180, 224, 268, 328, 399, 474, 567, 682, 807, 955, 1136, 1330, 1564, 1842, 2140, 2499, 2914, 3375, 3917, 4533, 5220, 6014, 6929, 7942, 9102, 10430, 11898, 13582, 15489, 17600, 19999, 22706, 25719
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum((x^(2*n-1)/(1-x^(2*n-1)))/Product((1-x^(2*k-1)), k=n..infinity), n=1..infinity).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)). - Vaclav Kotesovec, Jul 07 2019
EXAMPLE
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6+3+2+1=12.
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[(x^(2*n - 1)/(1 - x^(2*n - 1))) / Product[(1 - x^(2*k - 1)), {k, n, nmax}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved
Total number of largest parts in all partitions of n into odd parts.
+10
16
1, 2, 4, 5, 7, 10, 12, 14, 19, 23, 26, 33, 38, 44, 56, 63, 71, 88, 99, 114, 138, 155, 176, 208, 237, 269, 314, 357, 402, 468, 529, 594, 686, 772, 873, 999, 1119, 1260, 1431, 1608, 1804, 2039, 2284, 2554, 2884, 3219, 3590, 4032, 4493, 5011, 5603, 6231, 6928
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum((x^(2*n-1)/(1-x^(2*n-1)))/Product((1-x^(2*k-1)), k=1..n), n=1..infinity).
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 07 2019
EXAMPLE
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6+1+2+1=10.
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[(x^(2*n - 1)/(1 - x^(2*n - 1))) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
lpp[k_]:=Module[{c=Max[k]}, Count[k, c]]; Table[Total[lpp/@Select[IntegerPartitions[ n], AllTrue[ #, OddQ]&]], {n, 60}] (* Harvey P. Dale, Apr 24 2023 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved
Sum of smallest parts (counted with multiplicity) of all partitions of n.
+10
13
1, 4, 7, 15, 19, 39, 46, 80, 106, 160, 201, 318, 390, 554, 729, 998, 1262, 1727, 2168, 2894, 3670, 4749, 5963, 7737, 9635, 12232, 15257, 19206, 23727, 29723, 36509, 45296, 55512, 68292, 83298, 102079, 123805, 150697, 182254, 220790, 265766
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum(n*x^n/(1-x^n)*Product(1/(1-x^k), k = n .. infinity), n = 1 .. infinity).
a(n) ~ sqrt(2) * exp(Pi*sqrt(2*n/3)) / (4*Pi*sqrt(n)). - Vaclav Kotesovec, Jul 06 2019
EXAMPLE
Partitions of 4 are: [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4)=4*1+2*1+2*2+1*1+1*4=15.
MAPLE
b:= proc(n, i) option remember; `if`(irem(n, i)=0, n, 0)
+`if`(i>1, add(b(n-i*j, i-1), j=0..(n-1)/i), 0)
end:
a:= n-> b(n$2):
seq(a(n), n=1..50); # Alois P. Heinz, Feb 04 2016
MATHEMATICA
ss[n_]:=Module[{m=Min[n]}, Select[n, #==m&]]; Table[Total[Flatten[ss/@ IntegerPartitions[n]]], {n, 50}] (* Harvey P. Dale, Dec 16 2013 *)
b[n_, i_] := b[n, i] = If[Mod[n, i] == 0, n, 0] + If[i > 1, Sum[b[n - i*j, i - 1], {j, 0, (n - 1)/i}], 0]; a[n_] := b[n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved
Sum of largest parts (counted with multiplicity) of all partitions of n.
+10
12
0, 1, 4, 8, 17, 26, 49, 69, 115, 164, 249, 343, 513, 686, 974, 1314, 1806, 2382, 3232, 4208, 5597, 7244, 9456, 12118, 15687, 19899, 25422, 32079, 40589, 50796, 63805, 79303, 98817, 122179, 151145, 185820, 228598, 279476, 341807, 416051, 506205, 613244, 742720
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Margaret Archibald, A. Blecher, C. Brennan, A. Knopfmacher and T. Mansour, Partitions according to multiplicities and part sizes, Australasian Journal of Combinatorics, Volume 66(1) (2016), Pages 104-119.
Ljuben Mutafchiev, On the Largest Part Size and Its Multiplicity of a Random Integer Partition, arXiv:1712.03233 [math.PR], 2017.
FORMULA
G.f.: Sum_{n>=1} (n*x^n/(1-x^n))*Product_{k=1..n} 1/(1-x^k).
EXAMPLE
Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4) = 4*1 + 1*2 + 2*2 + 1*3 + 1*4 = 17.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1, t) +add((l->`if`(t, l,
l+[0, l[1]*i*j]))(b(n-i*j, i-1, true)), j=1..n/i)))
end:
a:= n-> b(n$2, false)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 29 2014
MATHEMATICA
f[n_] := Block[{c = 2n, k = 2, p = IntegerPartitions[n]}, m = Max @@@ p; l = Length[p]; While[k < l, c = c + m[[k]]*Count[p[[k]], m[[k]]]; k++ ]; If[n == 1, 1, c]]; Table[ f[n], {n, 41}] (* Robert G. Wilson v, Feb 18 2004, updated by Jean-François Alcover, Jan 29 2014 *)
nmax = 50; CoefficientList[Series[Sum[n*x^n/(1-x^n) * Product[1/(1 - x^k), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 06 2019 *)
Join[{0}, Table[Total[Flatten[First[Split[#]]&/@IntegerPartitions[n]]], {n, 50}]] (* Harvey P. Dale, Oct 29 2019 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Robert G. Wilson v, Feb 18 2004
STATUS
approved
Sum of largest parts of all partitions of n into odd parts.
+10
11
1, 1, 4, 4, 9, 12, 19, 24, 36, 48, 64, 83, 108, 140, 179, 224, 280, 352, 432, 532, 652, 795, 960, 1160, 1392, 1669, 1992, 2368, 2804, 3320, 3908, 4592, 5388, 6300, 7349, 8560, 9940, 11524, 13340, 15401, 17752, 20436, 23472, 26920, 30840, 35256, 40252, 45900
OFFSET
1,3
COMMENTS
a(n) = Sum_{k>=1} k*A116799(n,k). - Emeric Deutsch, Feb 24 2006
LINKS
FORMULA
G.f.: Sum_{n>=1} (2*n-1)*x^(2*n-1)/Product_{k=1..n} (1-x^(2*k-1)).
EXAMPLE
a(5)=9 because the partitions of 5 into odd parts are [5],[3,1,1] and [1,1,1,1,1] and the largest parts add up to 5+3+1=9.
MAPLE
g:=sum((2*n-1)*x^(2*n-1)/Product(1-x^(2*k-1), k=1..n), n=1..30): gser:=series(g, x=0, 50): seq(coeff(gser, x^n), n=1..48); # Emeric Deutsch, Feb 24 2006
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 15 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved
Sum of largest parts (counted with multiplicity) of all partitions of n into odd parts.
+10
10
1, 2, 6, 7, 13, 20, 28, 34, 53, 71, 88, 117, 148, 188, 250, 301, 365, 472, 565, 688, 860, 1027, 1224, 1486, 1771, 2107, 2524, 2983, 3496, 4158, 4867, 5666, 6676, 7762, 9021, 10525, 12145, 14034, 16249, 18696, 21478, 24721, 28308, 32364, 37110, 42289
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum((2*n-1)*x^(2*n-1)/(1-x^(2*n-1))/Product(1-x^(2*k-1), k = 1 .. n), n = 1 .. infinity).
EXAMPLE
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6*1+1*3+2*3+1*5=20.
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1)/(1 - x^(2*n - 1)) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved
Sum of smallest parts (counted with multiplicity) of all partitions of n into odd parts.
+10
10
1, 2, 6, 5, 12, 16, 21, 22, 43, 46, 60, 75, 92, 119, 164, 167, 220, 276, 320, 390, 491, 562, 665, 796, 949, 1109, 1342, 1530, 1804, 2144, 2442, 2843, 3342, 3837, 4471, 5147, 5894, 6780, 7841, 8910, 10204, 11718, 13282, 15168, 17337, 19594, 22225, 25210
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum((2*n-1)*x^(2*n-1)/(1-x^(2*n-1))/Product(1-x^(2*k-1), k = n .. infinity), n = 1 .. infinity).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)). - Vaclav Kotesovec, Jul 07 2019
EXAMPLE
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6*1+3*1+2*3+1*1=16.
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1)/(1 - x^(2*n - 1)) / Product[(1 - x^(2*k - 1)), {k, n, nmax}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved
Number of partitions of n such that the number of different parts is odd.
+10
7
1, 2, 2, 3, 2, 5, 4, 9, 13, 19, 27, 43, 54, 71, 102, 124, 161, 200, 257, 319, 400, 484, 618, 761, 956, 1164, 1450, 1806, 2226, 2741, 3367, 4137, 5020, 6163, 7485, 9042, 10903, 13172, 15721, 18956, 22542, 26925, 31935, 37962, 44861, 53183, 62651
OFFSET
1,2
FORMULA
a(n) = b(n, 1, 0, 0) with b(n, i, j, f) = if i<n then b(n-i, i, i, 1-f-(1-2*f)*0^(i-j)) + b(n, i+1, j, f) else (1-f-(1-2*f)*0^(i-j))*0^(i-n). - Reinhard Zumkeller, Feb 19 2004
G.f.: F(x)*G(x)/2, where F(x) = 1-Product(1-2*x^i, i=1..infinity) and G(x) = 1/Product(1-x^i, i=1..infinity).
a(n) = (A000041(n)-A104575(n))/2.
G.f. A(x) equals the off-diagonal entries in the 2 X 2 matrix Product_{n >= 1} [1, x^n/(1 - x^n); x^n/(1 - x^n), 1] = [B(x), A(x); A(x), B(x)], where B(x) is the g.f. of A092306. - Peter Bala, Feb 10 2021
EXAMPLE
n=6 has A000041(6)=11 partitions: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1 and 1+1+1+1+1+1 with partition sets: {6}, {1,5}, {2,4}, {1,4}, {3}, {1,2,3}, {1,3}, {2}, {1,2}, {1,2} and {1}, five of them have an odd number of elements, therefore a(6)=5.
PROG
(Haskell)
import Data.List (group)
a090794 = length . filter odd . map (length . group) . ps 1 where
ps x 0 = [[]]
ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
-- Reinhard Zumkeller, Dec 19 2013
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Feb 12 2004
EXTENSIONS
More terms from Reinhard Zumkeller, Feb 17 2004
Definition simplified and shortened by Jonathan Sondow, Oct 13 2013
STATUS
approved
Triangle read by rows: T(n,k) is the number of partitions of n into odd parts such that the smallest part is k (n>=1, k>=1).
+10
2
1, 1, 1, 0, 1, 2, 2, 0, 0, 0, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 1, 5, 0, 1, 6, 0, 1, 0, 0, 0, 0, 0, 1, 8, 0, 1, 0, 1, 10, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 12, 0, 2, 0, 1, 15, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 18, 0, 2, 0, 1, 0, 1, 22, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 27, 0, 3, 0, 1, 0, 1, 32, 0, 4, 0, 1, 0
OFFSET
1,6
COMMENTS
Row 2n-1 has 2n-1 terms; row 4n+2 has 2n+1 terms; row 4n has 2n-1 terms. Row sums yield A000009.
FORMULA
G.f.: Sum_{j=1..oo} t^(2*j-1)*x^(2*j-1)/Product_{i=j..oo} 1-x^(2*i-1).
T(n,2k)=0.
Sum_{k>=1} k*T(n,k) = A092314(n).
EXAMPLE
T(12,3)=2 because we have [9,3] and [3,3,3,3].
Triangle starts:
1;
1;
1,0,1;
2;
2,0,0,0,1;
3,0,1;
4,0,0,0,0,0,1
MAPLE
g:=sum(t^(2*j-1)*x^(2*j-1)/product(1-x^(2*i-1), i=j..20), j=1..30): gser:=simplify(series(g, x=0, 20)): for n from 1 to 17 do P[n]:=sort(coeff(gser, x^n)) od: d:=proc(n) if n mod 2 = 1 then n elif n mod 4 = 2 then n/2 else n/2-1 fi end: for n from 1 to 17 do seq(coeff(P[n], t^j), j=1..d(n)) od; # yields sequence in triangular form; d(n) is the degree of the polynomial P[n]
MATHEMATICA
imax = 18;
Rest@CoefficientList[#, t]& /@ Rest@CoefficientList[Sum[t^(2j-1)*x^(2j-1)/ Product[1 - x^(2i-1), {i, j, imax}], {j, 1, imax}] + O[x]^imax, x] // Flatten (* Jean-François Alcover, Aug 26 2024 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 24 2006
STATUS
approved

Search completed in 0.009 seconds