login
Search: a070960 -id:a070960
     Sort: relevance | references | number | modified | created      Format: long | short | data
A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.
+10
25
1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
OFFSET
0,2
COMMENTS
row(0) = {1}; row(n+1) = row(n) multiplied by n and prepended with (n+1);
A111063(n+1) = sum of n-th row;
T(2*n,n) = A002690(n), central terms;
T(n,0) = n + 1;
T(n,1) = A000290(n), n > 0;
T(n,2) = A011379(n-1), n > 1;
T(n,3) = A047927(n), n > 2;
T(n,4) = A192849(n-1), n > 3;
T(n,5) = A000142(5) * A027810(n-5), n > 4;
T(n,6) = A000142(6) * A027818(n-6), n > 5;
T(n,7) = A000142(7) * A056001(n-7), n > 6;
T(n,8) = A000142(8) * A056003(n-8), n > 7;
T(n,9) = A000142(9) * A056114(n-9), n > 8;
T(n,n-10) = 11 * A051431(n-10), n > 9;
T(n,n-9) = 10 * A049398(n-9), n > 8;
T(n,n-8) = 9 * A049389(n-8), n > 7;
T(n,n-7) = 8 * A049388(n-7), n > 6;
T(n,n-6) = 7 * A001730(n), n > 5;
T(n,n-5) = 6 * A001725(n), n > 5;
T(n,n-4) = 5 * A001720(n), n > 4;
T(n,n-3) = 4 * A001715(n), n > 2;
T(n,n-2) = A070960(n), n > 1;
T(n,n-1) = A052849(n), n > 0;
T(n,n) = A000142(n);
T(n,k) = A137948(n,k) * A007318(n,k), 0 <= k <= n.
LINKS
FORMULA
T(n,k) = n!*(n+1-k)/(n-k)!. - Werner Schulte, Sep 09 2017
EXAMPLE
. 0: 1;
. 1: 2, 1;
. 2: 3, 4, 2;
. 3: 4, 9, 12, 6;
. 4: 5, 16, 36, 48, 24;
. 5: 6, 25, 80, 180, 240, 120;
. 6: 7, 36, 150, 480, 1080, 1440, 720;
. 7: 8, 49, 252, 1050, 3360, 7560, 10080, 5040;
. 8: 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320;
. 9: 10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
MATHEMATICA
Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)
PROG
(Haskell)
a245334 n k = a245334_tabl !! n !! k
a245334_row n = a245334_tabl !! n
a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 30 2014
STATUS
approved
Number of distinct values produced from sums and products of n unity arguments.
+10
20
1, 2, 3, 4, 6, 9, 11, 17, 23, 30, 44, 60, 80, 114, 156, 212, 296, 404, 556, 770, 1065, 1463, 2032, 2795, 3889, 5364, 7422, 10300, 14229, 19722, 27391, 37892, 52599, 73075, 101301, 140588, 195405, 271024, 376608, 523518, 726812, 1010576, 1405013, 1952498
OFFSET
1,2
COMMENTS
Values listed calculated by exhaustive search algorithm.
For n+1 operands (n operations) there are (2n)!/((n!)((n+1)!)) possible postfix forms over a single operator. For each such form, there are 2^n ways to assign 2 operators (here, sum and product). Calculate results and eliminate duplicates.
Number of distinct positive integers that can be obtained by iteratively adding or multiplying together parts of an integer partition until only one part remains, starting with 1^n. - Gus Wiseman, Sep 29 2018
FORMULA
Equals partial sum of "number of numbers of complexity n" (A005421). - Jonathan Vos Post, Apr 07 2006
EXAMPLE
a(3)=3 since (in postfix): 111** = 11*1* = 1, 111*+ = 11*1+ = 111+* = 11+1* = 2 and 111++ = 11+1+ = 3. Note that at n=7, the 11 possible values produced are the set {1,2,3,4,5,6,7,8,9,10,12}. This is the first n for which there are "skipped" values in the set.
MAPLE
b:= proc(n) option remember; `if`(n=1, {1}, {seq(seq(seq(
[f+g, f*g][], g=b(n-i)), f=b(i)), i=1..iquo(n, 2))})
end:
a:= n-> nops(b(n)):
seq(a(n), n=1..35); # Alois P. Heinz, May 05 2019
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
Table[Length[Select[ReplaceListRepeated[{Array[1&, n]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]], {n, 10}] (* Gus Wiseman, Sep 29 2018 *)
PROG
(Python)
from functools import cache
@cache
def f(m):
if m == 1: return {1}
out = set()
for j in range(1, m//2+1):
for x in f(j):
for y in f(m-j):
out.update([x + y, x * y])
return out
def a(n): return len(f(n))
print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Aug 03 2022
KEYWORD
nonn,nice
EXTENSIONS
More terms from David W. Wilson, Oct 10 2001
a(43)-a(44) from Alois P. Heinz, May 05 2019
STATUS
approved
Number of distinct positive integers that can be obtained, starting with the initial interval partition (1, ..., n), by iteratively adding or multiplying together parts until only one part remains.
+10
11
1, 2, 5, 21, 94, 446, 2287, 12568, 78509
OFFSET
1,2
EXAMPLE
The n-th row lists all integers that can be obtained starting with (1, ..., n):
1
2 3
5 6 7 8 9
9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 27 28 30 32 36
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
Table[Length[Select[ReplaceListRepeated[{Range[n]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]], {n, 6}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 29 2018
STATUS
approved
Number of distinct positive integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with 1^n.
+10
8
0, 1, 1, 1, 1, 2, 4, 5, 10, 15, 21, 34, 49, 68, 101, 142, 197, 280, 387, 538, 751, 1045, 1442, 2010, 2772, 3865, 5339, 7396, 10273, 14201, 19693
OFFSET
0,6
EXAMPLE
We have
7 = 1+1+1+1+1+1+1,
8 = (1+1)*(1+1+1)+1+1,
9 = (1+1)*(1+1)*(1+1)+1,
10 = (1+1+1+1+1)*(1+1),
12 = (1+1+1)*(1+1+1+1),
so a(7) = 5.
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
mexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_?(#>1&), mie___, y_?(#>1&), afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Length[mexos[Table[1, {n}]]], {n, 30}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 01 2018
STATUS
approved
Minimum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.
+10
5
0, 1, 2, 1, 3, 2, 4, 1, 4, 3, 5, 2, 6, 4, 5, 1, 7, 4, 8, 3, 6, 5, 9, 2, 6, 6, 6, 4, 10, 5, 11, 1, 7, 7, 7, 4, 12, 8, 8, 3, 13, 6, 14, 5, 7, 9, 15, 2, 8, 6, 9, 6, 16, 6, 8, 4, 10, 10, 17, 5, 18, 11, 8, 1, 9, 7, 19, 7, 11, 7, 20, 4, 21, 12, 8, 8, 9, 8, 22, 3, 8
OFFSET
1,3
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
a(1) = 0, a(n) = max(A056239(n) - A007814(n), 1). - Charlie Neder, Oct 03 2018
EXAMPLE
a(30) = 5 because the minimum number that can be obtained starting with (3,2,1) is 3+2*1 = 5.
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
nexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Min[nexos[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 29 2018
STATUS
approved
Maximum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.
+10
5
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 7, 6, 8, 6, 8, 6, 9, 6, 9, 7, 8, 8, 10, 9, 11, 6, 10, 8, 12, 9, 12, 9, 12, 9, 13, 12, 14, 10, 12, 10, 15, 9, 16, 12, 14, 12, 16, 12, 15, 12, 16, 11, 17, 12, 18, 12, 16, 9, 18, 15, 19, 14, 18, 16, 20, 12, 21, 13
OFFSET
1,3
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
a(30) = 9 because the maximum number that can be obtained starting with (3,2,1) is 3*(2+1) = 9.
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
nexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Max[nexos[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 29 2018
STATUS
approved
a(n) is the greatest integer that can be obtained from the integers {1, 2, 3, ..., n} using each number at most once and the operators +,-,*,/,^.
+10
4
1, 3, 27, 115792089237316195423570985008687907853269984665640564039457584007913129639936
OFFSET
1,2
COMMENTS
a(4) = 2^(4^4) = 2^256 = 115792089237316195423570985008687907853269984665640564039457584007913129639936 with 78 digits. a(5) = 2^(3^(4^6)) with more than 10^1950 digits.
EXAMPLE
a(3) = 27 because 3^(2+1) = 27 is the greatest integer that can be obtained by using 1, 2, 3 once and the operations +, -, *, /, ^.
CROSSREFS
Cf. A070960.
KEYWORD
nonn
AUTHOR
Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002
STATUS
approved
Numbers k such that k! + (k!/2) + 1 is prime.
+10
4
4, 5, 7, 11, 12, 14, 18, 28, 30, 62, 135, 153, 275, 584, 630, 1424, 1493, 4419, 8492, 10950
OFFSET
1,1
COMMENTS
Numbers k such that A070960(k)+1 is prime.
No more terms < 10000. - Vaclav Kotesovec, Dec 12 2022
PROG
(PARI) is(k) = isprime(k!+(k!/2)+1);
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Arsen Vardanyan, Dec 01 2022
EXTENSIONS
a(18)-a(19) from Vaclav Kotesovec, Dec 09 2022
a(20) from Michael S. Branicky, Aug 02 2024
STATUS
approved
Numbers k such that k! + (k!/2) - 1 is prime.
+10
3
2, 5, 7, 15, 20, 47, 84, 138, 169, 257, 263, 431, 559, 2939, 4403, 4870, 5273
OFFSET
1,1
COMMENTS
Numbers k such that A070960(k) - 1 is prime.
No more terms < 10000. - Vaclav Kotesovec, Dec 12 2022
PROG
(PARI) is(k) = isprime(k!+(k!/2)-1);
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Arsen Vardanyan, Dec 04 2022
EXTENSIONS
a(14)-a(17) from Vaclav Kotesovec, Dec 07 2022
STATUS
approved
Number of different positive integers that we can obtain from the integers {1,2,...,n} using each number at most once and the operators +, -, *, /, where intermediate subexpressions must be integers.
+10
0
1, 3, 9, 31, 121, 542, 2868, 16329, 106762, 758155, 6142570
OFFSET
1,2
EXAMPLE
a(4)=31 because we can obtain the positive integers 1,2,...,28 and 30,32,36 by using the integers {1, 2, 3, 4} at most once and the four operations. For example 30 = 3*2*(4+1).
PROG
(Python)
def a(n):
R = dict() # index of each reachable subset is [card(s)-1][s]
for i in range(n): R[i] = dict()
for i in range(1, n+1): R[0][(i, )] = {i}
reach = set(range(1, n+1))
for j in range(1, n):
for i in range((j+1)//2):
for s1 in R[i]:
for s2 in R[j-1-i]:
if set(s1) & set(s2) == set():
s12 = tuple(sorted(set(s1) | set(s2)))
if s12 not in R[len(s12)-1]:
R[len(s12)-1][s12] = set()
for a in R[i][s1]:
for b in R[j-1-i][s2]:
allowed = [a+b, a*b, a-b, b-a]
if a!=0 and b%a==0: allowed.append(b//a)
if b!=0 and a%b==0: allowed.append(a//b)
R[len(s12)-1][s12].update(allowed)
reach.update(allowed)
return len(set(r for r in reach if r > 0 and r.denominator == 1))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Jul 01 2022
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Koksal Karakus (karakusk(AT)hotmail.com), Jun 02 2002
EXTENSIONS
a(10)-a(11) from Michael S. Branicky, Jul 01 2022
STATUS
approved

Search completed in 0.010 seconds