login
Search: a062786 -id:a062786
     Sort: relevance | references | number | modified | created      Format: long | short | data
Indices of triangular numbers (A000217) that are also centered 10-gonal numbers (A062786).
+20
3
1, 58, 2221, 84358, 3203401, 121644898, 4619302741, 175411859278, 6661031349841, 252943779434698, 9605202587168701, 364744754532975958, 13850695469665917721, 525961683092771897458, 19972693262055666185701, 758436382275022543159198, 28800609833188800973863841
OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to x^2 - 10*y^2 + x + 10*y - 2 = 0, the corresponding values of y being A280112.
FORMULA
a(n) = (-2 - (3+sqrt(10))*(19+6*sqrt(10))^(-n) + (-3+sqrt(10))*(19+6*sqrt(10))^n) / 4.
a(n) = 39*a(n-1) - 39*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 19*x - 2*x^2) / ((1 - x)*(1 - 38*x + x^2)).
EXAMPLE
58 is in the sequence because the 58th triangular number is 1711, which is also the 19th centered 10-gonal number.
MATHEMATICA
Table[Simplify[(-2 - (3 + #) (19 + 6 #)^(-n) + (-3 + #) (19 + 6 #)^n)/4] &@ Sqrt@ 10, {n, 17}] (* or *)
Rest@ CoefficientList[Series[x (1 + 19 x - 2 x^2)/((1 - x) (1 - 38 x + x^2)), {x, 0, 17}], x] (* Michael De Vlieger, Dec 26 2016 *)
PROG
(PARI) Vec(x*(1 + 19*x - 2*x^2) / ((1 - x)*(1 - 38*x + x^2)) + O(x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 26 2016
STATUS
approved
Indices of centered 10-gonal numbers (A062786) that are also triangular numbers (A000217).
+20
3
1, 19, 703, 26677, 1013005, 38467495, 1460751787, 55470100393, 2106403063129, 79987846298491, 3037431756279511, 115342418892322909, 4379974486151991013, 166323688054883335567, 6315920171599414760515, 239838642832722877563985, 9107552507471869932670897
OFFSET
1,2
COMMENTS
Also positive integers y in the solutions to x^2 - 10*y^2 + x + 10*y - 2 = 0, the corresponding values of x being A280111.
FORMULA
a(n) = 1/2 + (19 + 6*sqrt(10))^(-n)*(10+3*sqrt(10) + (10-3*sqrt(10))*(19+6*sqrt(10))^(2*n)) / 40.
a(n) = 39*a(n-1) - 39*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 20*x + x^2) / ((1 - x)*(1 - 38*x + x^2)).
EXAMPLE
19 is in the sequence because the 19th centered 10-gonal number is 1711, which is also the 58th triangular number.
MATHEMATICA
Table[Simplify[1/2 + (19 + 6 #)^(-n) (10 + 3 # + (10 - 3 #) (19 + 6*#)^(2 n))/40] &@ Sqrt@ 10, {n, 17}] (* or *)
Rest@ CoefficientList[Series[x (1 - 20 x + x^2)/((1 - x) (1 - 38 x + x^2)), {x, 0, 17}], x] (* Michael De Vlieger, Dec 26 2016 *)
PROG
(PARI) Vec(x*(1 - 20*x + x^2) / ((1 - x)*(1 - 38*x + x^2)) + O(x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 26 2016
STATUS
approved
Triangular numbers (A000217) that are also centered 10-gonal numbers (A062786).
+20
3
1, 1711, 2467531, 3558178261, 5130890585101, 7398740665537651, 10668978908814707911, 15384660187770143270281, 22184669321785637781037561, 31990277777354701910112892951, 46129958370276158368745010598051, 66519367979660443013028395169496861
OFFSET
1,2
FORMULA
a(n) = 1443*a(n-1) - 1443*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 268*x + x^2) / ((1 - x)*(1 - 1442*x + x^2)).
EXAMPLE
1711 is in the sequence because the 58th triangular number is 1711, which is also the 19th centered 10-gonal number.
MATHEMATICA
RecurrenceTable[{a[n] == 1443 a[n - 1] - 1443 a[n - 2] + a[n - 3], a[1] == 1, a[2] == 1711, a[3] == 2467531}, a, {n, 12}] (* or *)
Rest@ CoefficientList[Series[x (1 + 268 x + x^2)/((1 - x) (1 - 1442 x + x^2)), {x, 0, 12}], x] (* Michael De Vlieger, Dec 26 2016 *)
LinearRecurrence[{1443, -1443, 1}, {1, 1711, 2467531}, 20] (* Harvey P. Dale, Dec 29 2017 *)
PROG
(PARI) Vec(x*(1 + 268*x + x^2) / ((1 - x)*(1 - 1442*x + x^2)) + O(x^15))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 26 2016
STATUS
approved
Indices of 10-gonal numbers (A001107) that are also centered 10-gonal numbers (A062786).
+20
1
1, 11, 191, 3421, 61381, 1101431, 19764371, 354657241, 6364065961, 114198530051, 2049209474951, 36771572019061, 659839086868141, 11840331991607471, 212466136762066331, 3812550129725586481, 68413436198298490321, 1227629301439647239291, 22028913989715351816911
OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to 4*x^2 - 5*y^2 - 3*x + 5*y - 1 = 0, the corresponding values of y being A133273.
FORMULA
a(n) = (6 + (5+2*sqrt(5))*(9+4*sqrt(5))^(-n) + (5-2*sqrt(5))*(9+4*sqrt(5))^n)/16.
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 8*x + x^2) / ((1 - x)*(1 - 18*x + x^2)).
EXAMPLE
11 is in the sequence because the 11th 10-gonal number is 451, which is also the 10th centered 10-gonal number.
PROG
(PARI) Vec(x*(1 - 8*x + x^2) / ((1 - x)*(1 - 18*x + x^2)) + O(x^30))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 25 2016
STATUS
approved
Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
(Formerly M1041 N0391)
+10
429
1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379
OFFSET
0,2
COMMENTS
These are Hogben's central polygonal numbers with the (two-dimensional) symbol
2
.P
1 n
The first line cuts the pancake into 2 pieces. For n > 1, the n-th line crosses every earlier line (avoids parallelism) and also avoids every previous line intersection, thus increasing the number of pieces by n. For 16 lines, for example, the number of pieces is 2 + 2 + 3 + 4 + 5 + ... + 16 = 137. These are the triangular numbers plus 1 (cf. A000217).
m = (n-1)(n-2)/2 + 1 is also the smallest number of edges such that all graphs with n nodes and m edges are connected. - Keith Briggs, May 14 2004
Also maximal number of grandchildren of a binary vector of length n+2. E.g., a binary vector of length 6 can produce at most 11 different vectors when 2 bits are deleted.
This is also the order dimension of the (strong) Bruhat order on the finite Coxeter group B_{n+1}. - Nathan Reading (reading(AT)math.umn.edu), Mar 07 2002
Number of 132- and 321-avoiding permutations of {1,2,...,n+1}. - Emeric Deutsch, Mar 14 2002
For n >= 1 a(n) is the number of terms in the expansion of (x+y)*(x^2+y^2)*(x^3+y^3)*...*(x^n+y^n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 28 2003
Also the number of terms in (1)(x+1)(x^2+x+1)...(x^n+...+x+1); see A000140.
Narayana transform (analog of the binomial transform) of vector [1, 1, 0, 0, 0, ...] = A000124; using the infinite lower Narayana triangle of A001263 (as a matrix), N; then N * [1, 1, 0, 0, 0, ...] = A000124. - Gary W. Adamson, Apr 28 2005
Number of interval subsets of {1, 2, 3, ..., n} (cf. A002662). - Jose Luis Arregui (arregui(AT)unizar.es), Jun 27 2006
Define a number of straight lines in the plane to be in general arrangement when (1) no two lines are parallel, (2) there is no point common to three lines. Then these are the maximal numbers of regions defined by n straight lines in general arrangement in the plane. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Note that a(n) = a(n-1) + A000027(n-1). This has the following geometrical interpretation: Suppose there are already n-1 lines in general arrangement, thus defining the maximal number of regions in the plane obtainable by n-1 lines and now one more line is added in general arrangement. Then it will cut each of the n-1 lines and acquire intersection points which are in general arrangement. (See the comments on A000027 for general arrangement with points.) These points on the new line define the maximal number of regions in 1-space definable by n-1 points, hence this is A000027(n-1), where for A000027 an offset of 0 is assumed, that is, A000027(n-1) = (n+1)-1 = n. Each of these regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000027(n-1). Cf. the comments on A000125 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
When constructing a zonohedron, one zone at a time, out of (up to) 3-d non-intersecting parallelepipeds, the n-th element of this sequence is the number of edges in the n-th zone added with the n-th "layer" of parallelepipeds. (Verified up to 10-zone zonohedron, the enneacontahedron.) E.g., adding the 10th zone to the enneacontahedron requires 46 parallel edges (edges in the 10th zone) by looking directly at a 5-valence vertex and counting visible vertices. - Shel Kaphan, Feb 16 2006
Binomial transform of (1, 1, 1, 0, 0, 0, ...) and inverse binomial transform of A072863: (1, 3, 9, 26, 72, 192, ...). - Gary W. Adamson, Oct 15 2007
If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is the number of (n-2)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Equals row sums of triangle A144328. - Gary W. Adamson, Sep 18 2008
It appears that a(n) is the number of distinct values among the fractions F(i+1)/F(j+1) as j ranges from 1 to n and, for each fixed j, i ranges from 1 to j, where F(i) denotes the i-th Fibonacci number. - John W. Layman, Dec 02 2008
a(n) is the number of subsets of {1,2,...,n} that contain at most two elements. - Geoffrey Critzer, Mar 10 2009
For n >= 2, a(n) gives the number of sets of subsets A_1, A_2, ..., A_n of n = {1, 2, ..., n} such that Meet_{i = 1..n} A_i is empty and Sum_{j in [n]} (|Meet{i = 1..n, i != j} A_i|) is a maximum. - Srikanth K S, Oct 22 2009
The numbers along the left edge of Floyd's triangle. - Paul Muljadi, Jan 25 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i]:=1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010
Also the number of deck entries of Euler's ship. See the Meijer-Nepveu link. - Johannes W. Meijer, Jun 21 2010
(1 + x^2 + x^3 + x^4 + x^5 + ...)*(1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...) = (1 + 2x + 4x^2 + 7x^3 + 11x^4 + ...). - Gary W. Adamson, Jul 27 2010
The number of length n binary words that have no 0-digits between any pair of consecutive 1-digits. - Jeffrey Liese, Dec 23 2010
Let b(0) = b(1) = 1; b(n) = max(b(n-1)+n-1, b(n-2)+n-2) then a(n) = b(n+1). - Yalcin Aktar, Jul 28 2011
Also number of triangular numbers so far, for n > 0: a(n) = a(n-1) + Sum(A010054(a(k)): 0 <= k < n), see also A097602, A131073. - Reinhard Zumkeller, Nov 15 2012
Also number of distinct sums of 1 through n where each of those can be + or -. E.g., {1+2,1-2,-1+2,-1-2} = {3,-1,1,-3} and a(2) = 4. - Toby Gottfried, Nov 17 2011
This sequence is complete because the sum of the first n terms is always greater than or equal to a(n+1)-1. Consequently, any nonnegative number can be written as a sum of distinct terms of this sequence. See A204009, A072638. - Frank M Jackson, Jan 09 2012
The sequence is the number of distinct sums of subsets of the nonnegative integers, and its first differences are the positive integers. See A208531 for similar results for the squares. - John W. Layman, Feb 28 2012
Apparently the number of Dyck paths of semilength n+1 in which the sum of the first and second ascents add to n+1. - David Scambler, Apr 22 2013
Without 1 and 2, a(n) equals the terminus of the n-th partial sum of sequence 1, 1, 2. Explanation: 1st partial sums of 1, 1, 2 are 1, 2, 4; 2nd partial sums are 1, 3, 7; 3rd partial sums are 1, 4, 11; 4th partial sums are 1, 5, 16, etc. - Bob Selcoe, Jul 04 2013
Equivalently, numbers of the form 2*m^2+m+1, where m = 0, -1, 1, -2, 2, -3, 3, ... . - Bruno Berselli, Apr 08 2014
For n >= 2: quasi-triangular numbers; the almost-triangular numbers being A000096(n), n >= 2. Note that 2 is simultaneously almost-triangular and quasi-triangular. - Daniel Forgues, Apr 21 2015
n points in general position determine "n choose 2" lines, so A055503(n) <= a(n(n-1)/2). If n > 3, the lines are not in general position and so A055503(n) < a(n(n-1)/2). - Jonathan Sondow, Dec 01 2015
The digital root is period 9 (1, 2, 4, 7, 2, 7, 4, 2, 1), also the digital roots of centered 10-gonal numbers (A062786), for n > 0, A133292. - Peter M. Chema, Sep 15 2016
Partial sums of A028310. - J. Conrad, Oct 31 2016
For n >= 0, a(n) is the number of weakly unimodal sequences of length n over the alphabet {1, 2}. - Armend Shabani, Mar 10 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) != e(k). [Martinez and Savage, 2.4]
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) and e(i) < e(k). [Martinez and Savage, 2.4]
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) != e(k). [Martinez and Savage, 2.4]
(End)
Numbers m such that 8m - 7 is a square. - Bruce J. Nicholson, Jul 24 2017
From Klaus Purath, Jan 29 2020: (Start)
The odd prime factors != 7 occur in an interval of p successive terms either never or exactly twice, while 7 always occurs only once. If a prime factor p appears in a(n) and a(m) within such an interval, then n + m == -1 (mod p). When 7 divides a(n), then 2*n == -1 (mod 7). a(n) is never divisible by the prime numbers given in A003625.
While all prime factors p != 7 can occur to any power, a(n) is never divisible by 7^2. The prime factors are given in A045373. The prime terms of this sequence are given in A055469.
(End)
From Roger Ford, May 10 2021: (Start)
a(n-1) is the greatest sum of arch lengths for the top arches of a semi-meander with n arches. An arch length is the number of arches covered + 1.
/\ The top arch has a length of 3. /\ The top arch has a length of 3.
/ \ Both bottom arches have a //\\ The middle arch has a length of 2.
//\/\\ length of 1. ///\\\ The bottom arch has a length of 1.
Example: for n = 4, a(4-1) = a(3) = 7 /\
//\\
/\ ///\\\ 1 + 3 + 2 + 1 = 7. (End)
a(n+1) is the a(n)-th smallest positive integer that has not yet appeared in the sequence. - Matthew Malone, Aug 26 2021
For n> 0, let the n-dimensional cube {0,1}^n be, provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 2. Example: n = 4. (0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0) are at distance <= 2 from (0,0,0,0), so a(4) = 11. - Yosu Yurramendi, Dec 10 2021
a(n) is the sum of the first three entries of row n of Pascal's triangle. - Daniel T. Martin, Apr 13 2022
a(n-1) is the number of Grassmannian permutations that avoid a pattern, sigma, where sigma is a pattern of size 3 with exactly one descent. For example, sigma is one of the patterns, {132, 213, 231, 312}. - Jessica A. Tomasko, Sep 14 2022
a(n+4) is the number of ways to tile an equilateral triangle of side length 2*n with smaller equilateral triangles of side length n and side length 1. For example, with n=2, there are 22 ways to tile an equilateral triangle of side length 4 with smaller ones of sides 2 and 1, including the one tiling with sixteen triangles of sides 1 and the one tiling with four triangles of sides 2. - Ahmed ElKhatib and Greg Dresden, Aug 19 2024
REFERENCES
Robert B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 24.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
Henry Ernest Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 98.
William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
Akiva M. Yaglom and Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964).
LINKS
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Jean-Luc Baril and Céline Moreira Dos Santos, Pizza-cutter's problem and Hamiltonian path, Mathematics Magazine (2019) Vol. 88, No. 1, 1-9.
Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
Jean-Luc Baril, Toufik Mansour, and Armen Petrossian, Equivalence classes of permutations modulo excedances, preprint, Journal of Combinatorics, Volume 5 (2014) Number 4.
Jean-Luc Baril and Armen Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, preprint, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.
Christian Bean, Anders Claesson, and Henning Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2017.
Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.
Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.
David Coles, Triangle Puzzle.
M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
Tom Crawford, 22 Slices of Pizza with Six Cuts, Tom Rocks Maths video (2022)
Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
Karl Dilcher and Kenneth B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23. See Cor. 5.
Igor Dolinka, James East, and Robert D. Gray, Motzkin monoids and partial Brauer monoids, Journal of Algebra, volume 471, February 2017, pages 251-298. Also preprint arXiv:1512.02279 [math.GR], 2015. See Table 5.
Matthew England, Russell Bradford, and James H. Davenport, Cylindrical algebraic decomposition with equational constraints, Journal of Symbolic Computation, Vol. 100 (2020), pp. 38-71; arXiv preprint, arXiv:1903.08999 [cs.SC], 2019.
J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
Richard K. Guy, Letter to N. J. A. Sloane.
Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
M. F. Hasler, Interactive illustration of A000124. [Sep 06 2017: The user can choose the slices to make, but the program can suggest a set of n slices which should yield the maximum number of pieces. For n slices this obviously requires 2n endpoints, or 2n+1 if they are equally spaced, so if there are not enough "blobs", their number is accordingly increased. This is the distinction between "draw" (done when you change the slices or number of blobs by hand) and "suggest" (propose a new set of slices).]
Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute, Massachusetts, 2019.
Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
Cheyne Homberger and Vincent Vatter, On the effective and automatic enumeration of polynomial permutation classes, Journal of Symbolic Computation, Vol. 76 (2016), pp. 84-96; arXiv preprint, arXiv:1308.4946 [math.CO], 2013-2015.
Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 22.
Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
Myrto Kallipoliti, Robin Sulzgruber, and Eleni Tzanaki, Patterns in Shi tableaux and Dyck paths, arXiv:2006.06949 [math.CO], 2020.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016-2017.
Derek Levin, Lara Pudwell, Manda Riehl and Andrew Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
Jim Loy, Triangle Puzzle.
Toufik Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187.
Markus Moll, On a family of random noble means substitutions, Dr. Math. Dissertation, Universität Bielefeld, 2013, arXiv:1312.5136 [math.DS], 2013.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Derek J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., Vol. 30, No. 290 (1946), pp. 149-150.
Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
Franck Ramaharo and Fanja Rakotondrajao, A state enumeration of the foil knot, arXiv:1712.04026 [math.CO], 2017.
Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
Nathan Reading, On the structure of Bruhat Order, Ph.D. dissertation, University of Minnesota, April 2002.
Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, no. 1 (2002), 73-100.
Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985; see Example 3.5.
N. J. A. Sloane, On single-deletion-correcting codes, 2002.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 1.
Andrew James Turner and Julian Francis Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.
Eric Weisstein's World of Mathematics, Circle Division by Lines.
Eric Weisstein's World of Mathematics, Plane Division by Lines.
Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.
Wikipedia, Floyd's triangle.
FORMULA
G.f.: (1 - x + x^2)/(1 - x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = A108561(n+3, 2). - Reinhard Zumkeller, Jun 10 2005
G.f.: (1 - x^6)/((1 - x)^2*(1 - x^2)*(1 - x^3)). a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 04 2006
Euler transform of length 6 sequence [ 2, 1, 1, 0, 0, -1]. - Michael Somos, Sep 04 2006
a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 2, a(3) = 4. - Artur Jasinski, Oct 21 2008
a(n) = A000217(n) + 1.
a(n) = a(n-1) + n. E.g.f.:(1 + x + x^2/2)*exp(x). - Geoffrey Critzer, Mar 10 2009
a(n) = Sum_{k = 0..n + 1} binomial(n+1, 2(k - n)). - Paul Barry, Aug 29 2004
a(n) = binomial(n+2, 1) - 2*binomial(n+1, 1) + binomial(n+2, 2). - Zerinvary Lajos, May 12 2006
From Thomas Wieder, Feb 25 2009: (Start)
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i != l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. (End)
a(n) = A034856(n+1) - A005843(n) = A000217(n) + A005408(n) - A005843(n). - Jaroslav Krizek, Sep 05 2009
a(n) = 2*a(n-1) - a(n-2) + 1. - Eric Werley, Jun 27 2011
E.g.f.: exp(x)*(1+x+(x^2)/2) = Q(0); Q(k) = 1+x/(1-x/(2+x-4/(2+x*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
a(n) = A014132(n, 1) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n) = 1 + floor(n/2) + ceiling(n^2/2) = 1 + A004526(n) + A000982(n). - Wesley Ivan Hurt, Jun 14 2013
a(n) = A228074(n+1, n). - Reinhard Zumkeller, Aug 15 2013
For n > 0: A228446(a(n)) = 3. - Reinhard Zumkeller, Mar 12 2014
a(n) >= A263883(n) and a(n(n-1)/2) >= A055503(n). - Jonathan Sondow, Dec 01 2015
From Ilya Gutkovskiy, Jun 29 2016: (Start)
Dirichlet g.f.: (zeta(s-2) + zeta(s-1) + 2*zeta(s))/2.
Sum_{n >= 0} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) = A226985. (End)
a(n) = (n+1)^2 - A000096(n). - Anton Zakharov, Jun 29 2016
a(n) = A101321(1, n). - R. J. Mathar, Jul 28 2016
a(n) = 2*a(n-1) - binomial(n-1, 2) and a(0) = 1. - Armend Shabani, Mar 10 2017
a(n) = A002620(n+2) + A002620(n-1). - Anton Zakharov, May 11 2017
From Klaus Purath, Jan 29 2020: (Start)
a(n) = (Sum_{i=n-2..n+2} A000217(i))/5.
a(n) = (Sum_{i=n-2..n+2} A002378(i))/10.
a(n) = (Sum_{i=n..n+2} A002061(i)+1)/6.
a(n) = (Sum_{i=n-1..n+2} A000290(i)+2)/8.
a(n) = A060533(n-1) + 10, n > 5.
a(n) = (A002378(n) + 2)/2.
a(n) = A152948(n+2) - 1.
a(n) = A152950(n+1) - 2.
a(n) = (A002061(n) + A002061(n+2))/4.
(End)
Sum_{n>=0} (-1)^n/a(n) = A228918. - Amiram Eldar, Nov 20 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(15)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=1} (1 - 1/a(n)) = 2*Pi*sech(sqrt(7)*Pi/2). (End)
a((n^2-3n+6)/2) + a((n^2-n+4)/2) = a(n^2-2n+6)/2. - Charlie Marion, Feb 14 2023
EXAMPLE
a(3) = 7 because the 132- and 321-avoiding permutations of {1, 2, 3, 4} are 1234, 2134, 3124, 2314, 4123, 3412, 2341.
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 22*x^6 + 29*x^7 + ...
MAPLE
A000124 := n-> n*(n+1)/2+1;
MATHEMATICA
FoldList[#1 + #2 &, 1, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Accumulate[Range[0, 60]] + 1 (* Harvey P. Dale, Mar 12 2013 *)
Select[Range[2000], IntegerQ[Sqrt[8 # - 7]] &] (* Vincenzo Librandi, Apr 16 2014 *)
Table[PolygonalNumber[n] + 1, {n, 0, 52}] (* Michael De Vlieger, Jun 30 2016, Version 10.4 *)
LinearRecurrence[{3, -3, 1}, {1, 2, 4}, 53] (* Jean-François Alcover, Sep 23 2017 *)
PROG
(PARI) {a(n) = (n^2 + n) / 2 + 1}; /* Michael Somos, Sep 04 2006 */
(Haskell)
a000124 = (+ 1) . a000217
-- Reinhard Zumkeller, Oct 04 2012, Nov 15 2011
(Magma) [n: n in [0..1500] | IsSquare(8*n-7)]; // Vincenzo Librandi, Apr 16 2014
(GAP) List([0..60], n->n*(n+1)/2+1); # Muniru A Asiru, Apr 11 2018
(Scala) (1 to 52).scanLeft(1)(_ + _) // Alonso del Arte, Feb 24 2019
(Python)
def a(n): return n*(n+1)//2 + 1
print([a(n) for n in range(53)]) # Michael S. Branicky, Aug 26 2021
CROSSREFS
Cf. A000096 (Maximal number of pieces that can be obtained by cutting an annulus with n cuts, for n >= 1).
Slicing a cake: A000125, a bagel: A003600.
Partial sums =(A033547)/2, (A014206)/2.
The first 20 terms are also found in A025732 and A025739.
Cf. A055469 Quasi-triangular primes.
Cf. A002620.
Cf. A000217.
KEYWORD
nonn,core,easy,nice
STATUS
approved
a(n) = n + (n+1)^2.
+10
188
1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379, 419, 461, 505, 551, 599, 649, 701, 755, 811, 869, 929, 991, 1055, 1121, 1189, 1259, 1331, 1405, 1481, 1559, 1639, 1721, 1805, 1891, 1979, 2069, 2161, 2255, 2351, 2449, 2549, 2651
OFFSET
0,2
COMMENTS
a(n+1) is the least k > a(n) + 1 such that A000217(a(n)) + A000217(k) is a square. - David Wasserman, Jun 30 2005
Values of Fibonacci polynomial n^2 - n - 1 for n = 2, 3, 4, 5, ... - Artur Jasinski, Nov 19 2006
A127701 * [1, 2, 3, ...]. - Gary W. Adamson, Jan 24 2007
Row sums of triangle A135223. - Gary W. Adamson, Nov 23 2007
Equals row sums of triangle A143596. - Gary W. Adamson, Aug 26 2008
a(n-1) gives the number of n X k rectangles on an n X n chessboard (for k = 1, 2, 3, ..., n). - Aaron Dunigan AtLee, Feb 13 2009
sqrt(a(0) + sqrt(a(1) + sqrt(a(2) + sqrt(a(3) + ...)))) = sqrt(1 + sqrt(5 + sqrt(11 + sqrt(19 + ...)))) = 2. - Miklos Kristof, Dec 24 2009
When n + 1 is prime, a(n) gives the number of irreducible representations of any nonabelian group of order (n+1)^3. - Andrew Rupinski, Mar 17 2010
a(n) = A176271(n+1, n+1). - Reinhard Zumkeller, Apr 13 2010
The product of any 4 consecutive integers plus 1 is a square (see A062938); the terms of this sequence are the square roots. - Harvey P. Dale, Oct 19 2011
Or numbers not expressed in the form m + floor(sqrt(m)) with integer m. - Vladimir Shevelev, Apr 09 2012
Left edge of the triangle in A214604: a(n) = A214604(n+1,1). - Reinhard Zumkeller, Jul 25 2012
Another expression involving phi = (1 + sqrt(5))/2 is a(n) = (n + phi)(n + 1 - phi). Therefore the numbers in this sequence, even if they are prime in Z, are not prime in Z[phi]. - Alonso del Arte, Aug 03 2013
a(n-1) = n*(n+1) - 1, n>=0, with a(-1) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 5 for b = 2*n+1. In general D = b^2 - 4ac > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) has prime factors given by A038872. - Richard R. Forberg, Dec 10 2014
A253607(a(n)) = -1. - Reinhard Zumkeller, Jan 05 2015
An example of a quadratic sequence for which the continued square root map (see A257574) produces the number 2. There are infinitely many sequences with this property - another example is A028387. See Popular Computing link. - N. J. A. Sloane, May 03 2015
Left edge of the triangle in A260910: a(n) = A260910(n+2,1). - Reinhard Zumkeller, Aug 04 2015
Numbers m such that 4m+5 is a square. - Bruce J. Nicholson, Jul 19 2017
The numbers represented as 131 in base n: 131_4 = 29, 131_5 = 41, ... . If 'digits' larger than the base are allowed then 131_2 = 11 and 131_1 = 5 also. - Ron Knott, Nov 14 2017
From Klaus Purath, Mar 18 2019: (Start)
Let m be a(n) or a prime factor of a(n). Then, except for 1 and 5, there are, if m is a prime, exactly two squares y^2 such that the difference y^2 - m contains exactly one pair of factors {x,z} such that the following applies: x*z = y^2 - m, x + y = z with
x < y, where {x,y,z} are relatively prime numbers. {x,y,z} are the initial values of a sequence of the Fibonacci type. Thus each a(n) > 5, if it is a prime, and each prime factor p > 5 of an a(n) can be assigned to exactly two sequences of the Fibonacci type. a(0) = 1 belongs to the original Fibonacci sequence and a(1) = 5 to the Lucas sequence.
But also the reverse assignment applies. From any sequence (f(i)) of the Fibonacci type we get from its 3 initial values by f(i)^2 - f(i-1)*f(i+1) with f(i-1) < f(i) a term a(n) or a prime factor p of a(n). This relation is also valid for any i. In this case we get the absolute value |a(n)| or |p|. (End)
a(n-1) = 2*T(n) - 1, for n>=1, with T = A000217, is a proper subsequence of A089270, and the terms are 0,-1,+1 (mod 5). - Wolfdieter Lang, Jul 05 2019
a(n+1) is the number of wedged n-dimensional spheres in the homotopy of the neighborhood complex of Kneser graph KG_{2,n}. Here, KG_{2,n} is a graph whose vertex set is the collection of subsets of cardinality 2 of set {1,2,...,n+3,n+4} and two vertices are adjacent if and only if they are disjoint. - Anurag Singh, Mar 22 2021
Also the number of squares between (n+2)^2 and (n+2)^4. - Karl-Heinz Hofmann, Dec 07 2021
(x, y, z) = (A001105(n+1), -a(n-1), -a(n)) are solutions of the Diophantine equation x^3 + 4*y^3 + 4*z^3 = 8. - XU Pingya, Apr 25 2022
The least significant digit of terms of this sequence cycles through 1, 5, 1, 9, 9. - Torlach Rush, Jun 05 2024
LINKS
Patrick De Geest, World!Of Numbers
Adalbert Kerber, A matrix of combinatorial numbers related to the symmetric groups<, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Nandini Nilakantan and Anurag Singh, Homotopy type of neighborhood complexes of Kneser graphs, KG_{2,k}, Proceeding-Mathematical Sciences, 128, Article number: 53(2018).
Yanni Pei and Jiang Zeng, Counting signed derangements with right-to-left minima and excedances, arXiv:2206.11236 [math.CO], 2022.
Popular Computing (Calabasas, CA), The CSR Function, Vol. 4 (No. 34, Jan 1976), pages PC34-10 to PC34-11. Annotated and scanned copy.
Zdzislaw Skupień and Andrzej Żak, Pair-sums packing and rainbow cliques, in Topics In Graph Theory, A tribute to A. A. and T. E. Zykovs on the occasion of A. A. Zykov's 90th birthday, ed. R. Tyshkevich, Univ. Illinois, 2013, pages 131-144, (in English and Russian).
FORMULA
a(n) = sqrt(A062938(n)). - Floor van Lamoen, Oct 08 2001
a(0) = 1, a(1) = 5, a(n) = (n+1)*a(n-1) - (n+2)*a(n-2) for n > 1. - Gerald McGarvey, Sep 24 2004
a(n) = A105728(n+2, n+1). - Reinhard Zumkeller, Apr 18 2005
a(n) = A109128(n+2, 2). - Reinhard Zumkeller, Jun 20 2005
a(n) = 2*T(n+1) - 1, where T(n) = A000217(n). - Gary W. Adamson, Aug 15 2007
a(n) = A005408(n) + A002378(n); A084990(n+1) = Sum_{k=0..n} a(k). - Reinhard Zumkeller, Aug 20 2007
Binomial transform of [1, 4, 2, 0, 0, 0, ...] = (1, 5, 11, 19, ...). - Gary W. Adamson, Sep 20 2007
G.f.: (1+2*x-x^2)/(1-x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - R. J. Mathar, Jul 11 2009
a(n) = (n + 2 + 1/phi) * (n + 2 - phi); where phi = 1.618033989... Example: a(3) = 19 = (5 + .6180339...) * (3.381966...). Cf. next to leftmost column in A162997 array. - Gary W. Adamson, Jul 23 2009
a(n) = a(n-1) + 2*(n+1), with n > 0, a(0) = 1. - Vincenzo Librandi, Nov 18 2010
For k < n, a(n) = (k+1)*a(n-k) - k*a(n-k-1) + k*(k+1); e.g., a(5) = 41 = 4*11 - 3*5 + 3*4. - Charlie Marion, Jan 13 2011
a(n) = lower right term in M^2, M = the 2 X 2 matrix [1, n; 1, (n+1)]. - Gary W. Adamson, Jun 29 2011
G.f.: (x^2-2*x-1)/(x-1)^3 = G(0) where G(k) = 1 + x*(k+1)*(k+4)/(1 - 1/(1 + (k+1)*(k+4)/G(k+1)); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 16 2012
Sum_{n>0} 1/a(n) = 1 + Pi*tan(sqrt(5)*Pi/2)/sqrt(5). - Enrique Pérez Herrero, Oct 11 2013
E.g.f.: exp(x) (1+4*x+x^2). - Tom Copeland, Dec 02 2013
a(n) = A005408(A000217(n)). - Tony Foster III, May 31 2016
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2).
Product_{n>=1} (1 - 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2)/6. (End)
a(5*n+1)/5 = A062786(n+1). - Torlach Rush, Jun 05 2024
EXAMPLE
From Ilya Gutkovskiy, Apr 13 2016: (Start)
Illustration of initial terms:
o o
o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o
n=0 n=1 n=2 n=3 n=4
(End)
From Klaus Purath, Mar 18 2019: (Start)
Examples:
a(0) = 1: 1^1-0*1 = 1, 0+1 = 1 (Fibonacci A000045).
a(1) = 5: 3^2-1*4 = 5, 1+3 = 4 (Lucas A000032).
a(2) = 11: 4^2-1*5 = 11, 1+4 = 5 (A000285); 5^2-2*7 = 11, 2+5 = 7 (A001060).
a(3) = 19: 5^2-1*6 = 19, 1+5 = 6 (A022095); 7^2-3*10 = 19, 3+7 = 10 (A022120).
a(4) = 29: 6^2-1*7 = 29, 1+6 = 7 (A022096); 9^2-4*13 = 29, 4+9 = 13 (A022130).
a(11)/5 = 31: 7^2-2*9 = 31, 2+7 = 9 (A022113); 8^2-3*11 = 31, 3+8 = 11 (A022121).
a(24)/11 = 59: 9^2-2*11 = 59, 2+9 = 11 (A022114); 12^2-5*17 = 59, 5+12 = 17 (A022137).
(End)
MATHEMATICA
FoldList[## + 2 &, 1, 2 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
Table[n + (n + 1)^2, {n, 0, 100}] (* Vincenzo Librandi, Oct 17 2012 *)
Table[ FrobeniusNumber[{n, n + 1}], {n, 2, 30}] (* Zak Seidov, Jan 14 2015 *)
PROG
(Sage) [n+(n+1)^2 for n in range(0, 48)] # Zerinvary Lajos, Jul 03 2008
(Magma) [n + (n+1)^2: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n^2+3*n+1 \\ Charles R Greathouse IV, Jun 10 2011
(Haskell)
a028387 n = n + (n + 1) ^ 2 -- Reinhard Zumkeller, Jul 17 2014
(Python) def a(n): return (n**2+3*n+1) # Torlach Rush, May 07 2024
CROSSREFS
Complement of A028392. Third column of array A094954.
Cf. A000217, A002522, A062392, A062786, A127701, A135223, A143596, A052905, A162997, A062938 (squares of this sequence).
A110331 and A165900 are signed versions.
Cf. A002327 (primes), A094210.
Frobenius number for k successive numbers: this sequence (k=2), A079326 (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).
KEYWORD
nonn,easy
EXTENSIONS
Minor edits by N. J. A. Sloane, Jul 04 2010, following suggestions from the Sequence Fans Mailing List
STATUS
approved
Number of points on surface of cuboctahedron (or icosahedron): a(0) = 1; for n > 0, a(n) = 10n^2 + 2. Also coordination sequence for f.c.c. or A_3 or D_3 lattice.
(Formerly M4834)
+10
64
1, 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002, 1212, 1442, 1692, 1962, 2252, 2562, 2892, 3242, 3612, 4002, 4412, 4842, 5292, 5762, 6252, 6762, 7292, 7842, 8412, 9002, 9612, 10242, 10892, 11562, 12252, 12962, 13692, 14442, 15212, 16002
OFFSET
0,2
COMMENTS
Sequence found by reading the segment (1, 12) together with the line from 12, in the direction 12, 42, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
REFERENCES
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF4
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #1.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
S. Rosen, Wizard of the Dome: R. Buckminster Fuller; Designer for the Future. Little, Brown, Boston, 1969, p. 109.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), 253-256
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
G. Nebe and N. J. A. Sloane, Home page for this lattice
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Reticular Chemistry Structure Resource (RCSR), The fcu tiling (or net)
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
R. Vaughan & N. J. A. Sloane, Correspondence, 1975
Wikipedia, Cuboctahedron
FORMULA
G.f.: (1+x)*(1+8*x+x^2)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
G.f. for coordination sequence for A_n lattice is (1-z)^(-n) * Sum_{i=0..n} binomial(n, i)^2*z^i. [Bacher et al.]
a(n+1) = A027599(n+2) + A092277(n+1) - Creighton Dement, Feb 11 2005
a(n) = 2 + A033583(n), n >= 1. - Omar E. Pol, Jul 18 2012
a(n) = 12 + 24*(n-1) + 8*A000217(n-2) + 6*A000290(n-1). The properties of the cuboctahedron, namely, its number of vertices (12), edges (24), and faces as well as face-type (8 triangles and 6 squares), are involved in this formula. - Peter M. Chema, Mar 26 2017
a(n) = A062786(n) + A062786(n+1). - R. J. Mathar, Feb 28 2018
E.g.f.: -1 + 2*(1 + 5*x + 5*x^2)*exp(x). - G. C. Greubel, May 25 2023
Sum{n>=0} 1/a(n) = 3/4 + Pi*sqrt(5)*coth(Pi/sqrt 5)/20 = 1.14624... - R. J. Mathar, Apr 27 2024
MATHEMATICA
Join[{1}, 10*Range[40]^2+2] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {12, 42, 92}, 40]] (* Harvey P. Dale, May 28 2014 *)
PROG
(PARI) a(n)=if(n<0, 0, 10*n^2+1+(n>0))
(Magma) [n eq 0 select 1 else 2*(5*n^2+1): n in [0..55]]; // G. C. Greubel, May 25 2023
(SageMath) [2*(5*n^2 + 1)-int(n==0) for n in range(56)] # G. C. Greubel, May 25 2023
CROSSREFS
Partial sums give A005902.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, R. Vaughan
STATUS
approved
Table T(n,m) = 1 + n*m*(m+1)/2 read by antidiagonals: centered polygonal numbers.
+10
26
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 7, 4, 1, 1, 11, 13, 10, 5, 1, 1, 16, 21, 19, 13, 6, 1, 1, 22, 31, 31, 25, 16, 7, 1, 1, 29, 43, 46, 41, 31, 19, 8, 1, 1, 37, 57, 64, 61, 51, 37, 22, 9, 1, 1, 46, 73, 85, 85, 76, 61, 43, 25, 10, 1, 1, 56, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 1, 67
OFFSET
0,5
COMMENTS
Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.
FORMULA
T(n,2) = A016777(n). T(n,3) = A016921(n). T(n,4) = A017281(n).
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015
EXAMPLE
The upper left corner of the infinite array T is
|0| 1 1 1 1 1 1 1 1 1 1 ... A000012
|1| 1 2 4 7 11 16 22 29 37 46 ... A000124
|2| 1 3 7 13 21 31 43 57 73 91 ... A002061
|3| 1 4 10 19 31 46 64 85 109 136 ... A005448
|4| 1 5 13 25 41 61 85 113 145 181 ... A001844
|5| 1 6 16 31 51 76 106 141 181 226 ... A005891
|6| 1 7 19 37 61 91 127 169 217 271 ... A003215
|7| 1 8 22 43 71 106 148 197 253 316 ... A069099
|8| 1 9 25 49 81 121 169 225 289 361 ... A016754
|9| 1 10 28 55 91 136 190 253 325 406 ... A060544
MAPLE
A101321 := proc(n, k)
n*k*(k+1)/2+1 ;
end proc: # R. J. Mathar, Jul 28 2016
MATHEMATICA
T[n_, m_] := 1 + n m (m + 1)/2;
Table[T[n - m, m], {n, 0, 12}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 23 2020 *)
PROG
(Iverson's J language) Let cfn be the formula above. Then the first 20 rows and columns of T are: T =: cfn / ~ i. 20 where i.
(PARI) T(n, m) = 1 + n*m*(m+1)/2 \\ Charles R Greathouse IV, Jul 28 2016
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004
EXTENSIONS
Edited by R. J. Mathar, Oct 21 2009
STATUS
approved
Concentric pentagonal numbers: floor( 5*n^2 / 4 ).
+10
24
0, 1, 5, 11, 20, 31, 45, 61, 80, 101, 125, 151, 180, 211, 245, 281, 320, 361, 405, 451, 500, 551, 605, 661, 720, 781, 845, 911, 980, 1051, 1125, 1201, 1280, 1361, 1445, 1531, 1620, 1711, 1805, 1901, 2000, 2101, 2205, 2311, 2420, 2531, 2645, 2761, 2880, 3001
OFFSET
0,3
COMMENTS
Also A033429 and A062786 interleaved. - Omar E. Pol, Sep 28 2011
Partial sums of A047209. - Reinhard Zumkeller, Jan 07 2012
From Wolfdieter Lang, Aug 06 2013: (Start)
a(n) = -N(-floor(n/2),n) with the N(a,b) = ((2*a+b)^2 - b^2*5)/4, the norm for integers a + b*omega(5), a, b rational integers, in the quadratic number field Q(sqrt(5)), where omega(5) = (1 + sqrt(5))/2 (golden section).
a(n) = max({|N(a,n)|,a = -n..+n}) = |N(-floor(n/2),n)| = n^2 + n*floor(n/2) - floor(n/2)^2 = floor(5*n^2/4) (the last eq. checks for even and odd n). (End)
FORMULA
a(n) = 5*n^2/4+((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
G.f.: x*(1+3*x+x^2)/(1-2*x+2*x^3-x^4). - Colin Barker, Jan 06 2012
a(n) = a(-n); a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>0, a(-1) = 1, a(0) = 0, a(1) = 1, a(2) = 5, n >= 3. (See the Bruno Berselli recurrence and a general comment for primes 1 (mod 4) under A227541). - Wolfdieter Lang, Aug 08 2013
a(n) = Sum_{j=1..n} Sum{i=1..n} ceiling((i+j-n+1)/2). - Wesley Ivan Hurt, Mar 12 2015
Sum_{n>=1} 1/a(n) = Pi^2/30 + tan(Pi/(2*sqrt(5)))*Pi/sqrt(5). - Amiram Eldar, Jan 16 2023
EXAMPLE
From Omar E. Pol, Sep 28 2011 (Start):
Illustration of initial terms (In a precise representation the pentagons should appear strictly concentric):
.
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o
. o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 11 20 31
.
(End)
MAPLE
A032527:=n->5*n^2/4+((-1)^n-1)/8: seq(A032527(n), n=0..100); # Wesley Ivan Hurt, Mar 12 2015
MATHEMATICA
Table[Round[5n^2/4], {n, 0, 39}] (* Alonso del Arte, Sep 28 2011 *)
PROG
(PARI) a(n)=5*n^2>>2 \\ Charles R Greathouse IV, Sep 28 2011
(Magma) [5*n^2/4+((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
(Haskell)
a032527 n = a032527_list !! n
a032527_list = scanl (+) 0 a047209_list
-- Reinhard Zumkeller, Jan 07 2012
(Python)
def A032527(n): return 5*n**2>>2 # Chai Wah Wu, Jul 30 2022
CROSSREFS
Cf. A000290, A032528, A077043, A195041. Column 5 of A195040. [Omar E. Pol, Sep 28 2011]
KEYWORD
nonn,easy
EXTENSIONS
New name from Omar E. Pol, Sep 28 2011
STATUS
approved
a(n) = n*(5*n^2 - 2)/3.
+10
22
0, 1, 12, 43, 104, 205, 356, 567, 848, 1209, 1660, 2211, 2872, 3653, 4564, 5615, 6816, 8177, 9708, 11419, 13320, 15421, 17732, 20263, 23024, 26025, 29276, 32787, 36568, 40629, 44980, 49631, 54592
OFFSET
0,3
COMMENTS
3-dimensional analog of centered polygonal numbers.
Also as a(n)=(1/6)*(10*n^3-4*n), n>0: structured pentagonal anti-diamond numbers (vertex structure 11) (Cf. A051673 = alternate vertex A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n+1)-10*a(n) = (n+1)*(5*(n+1)^2-2)/3 - (10n(n+1)(n+2)/6) = n. The unit digits are 0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,... . - Eric Desbiaux, Aug 18 2008
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
LINKS
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
FORMULA
G.f.: x*(1+8*x+x^2)/(1-x)^4. - Colin Barker, Jan 08 2012
E.g.f.: (x/3)*(3 + 15*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 01 2017
MAPLE
A004466:=n->n*(5*n^2 - 2)/3; seq(A004466(n), n=0..50); # Wesley Ivan Hurt, Mar 10 2014
MATHEMATICA
Table[n(5n^2-2)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
PROG
(Magma) [n*(5*n^2-2)/3: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(PARI) a(n)=n*(5*n^2-2)/3 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A062786 (first differences), A264853 (partial sums).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
KEYWORD
nonn,easy
AUTHOR
Albert D. Rich (Albert_Rich(AT)msn.com)
STATUS
approved

Search completed in 0.031 seconds