login
Search: a062204 -id:a062204
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
33
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 13, 1, 1, 1, 75, 409, 63, 1, 1, 1, 541, 23917, 16081, 321, 1, 1, 1, 4683, 2244361, 10681263, 699121, 1683, 1, 1, 1, 47293, 308682013, 14638956721, 5552351121, 32193253, 8989, 1, 1, 1, 545835, 58514835289, 35941784497263, 117029959485121, 3147728203035, 1538743249, 48639, 1, 1
OFFSET
0,8
COMMENTS
Also, A(n,k) is the number of alignments for k sequences of length n each (Slowinski 1998).
Row r > 0 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)), or equivalently to sqrt(r) * (r^(r-1)/(r-1)!)^n * (n!)^r / (2^r * (Pi*n)^((r-1)/2) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016
From Vaclav Kotesovec, Mar 23 2016: (Start)
Column k > 0 is asymptotic to sqrt(c(k)) * d(k)^n / (Pi*n)^((k-1)/2), where c(k) and d(k) are roots of polynomial equations of degree k, independent on n.
---------------------------------------------------
k d(k)
---------------------------------------------------
2 5.8284271247461900976033774484193...
3 56.9476283720414911685286267804411...
4 780.2794068067951456595241495989622...
5 13755.2719024115081712083954421541320...
6 296476.9162644200814909862281498491264...
7 7553550.6198338218721069097516499501996...
8 222082591.6017202421029000117685530884167...
9 7400694480.0494436216324852038000444393262...
10 275651917450.6709238286995776605620357737005...
---------------------------------------------------
d(k) is a root of polynomial:
---------------------------------------------------
k=2, 1 - 6*d + d^2
k=3, -1 + 3*d - 57*d^2 + d^3
k=4, 1 - 12*d - 218*d^2 - 780*d^3 + d^4
k=5, -1 + 5*d - 1260*d^2 - 3740*d^3 - 13755*d^4 + d^5
k=6, 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6
k=7, -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7
k=8, 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8
(End)
d(k) = (2^(1/k) - 1)^(-k). - David Bevan, Apr 07 2022
d(k) is asymptotic to (k/log(2))^k/sqrt(2). - David Bevan, Apr 07 2022
A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column. - Andrew Howroyd, Jan 23 2020
LINKS
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
FORMULA
A(n,k) = Sum_{j=0..k*n} Sum_{i=0..j} (-1)^i*C(j,i)*C(j-i,n)^k.
A(n,k) = Sum_{i >= 0} binomial(i,n)^k/2^(i+1). - Peter Bala, Jan 30 2018
A(n,k) = Sum_{j=0..n*k} binomial(j,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020
EXAMPLE
A(2,2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 13, 75, 541, ...
1, 1, 13, 409, 23917, 2244361, ...
1, 1, 63, 16081, 10681263, 14638956721, ...
1, 1, 321, 699121, 5552351121, 117029959485121, ...
1, 1, 1683, 32193253, 3147728203035, 1050740615666453461, ...
MAPLE
A:= (n, k)-> add(add((-1)^i*binomial(j, i)*
binomial(j-i, n)^k, i=0..j), j=0..k*n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
A[_, 0] = 1; A[n_, k_] := Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 22 2016, after Alois P. Heinz *)
PROG
(PARI) T(n, k) = {my(m=n*k); sum(j=0, m, binomial(j, n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020
CROSSREFS
Columns: A000012 (k=0 and k=1), A001850 (k=2), A126086 (k=3), A263064 (k=4), A263065 (k=5), A263066 (k=6), A263067 (k=7), A263068 (k=8), A263069 (k=9), A263070 (k=10).
Rows: A000012 (n=0), A000670 (n=1), A055203 (n=2), A062208 (n=3), A062205 (n=4), A263061 (n=5), A263062 (n=6), A062204 (n=7), A263063 (n=8), A263071 (n=9), A263072 (n=10).
Main diagonal: A262810.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 02 2015
STATUS
approved
a(n) = Sum_{m>=0} binomial(m,3)^n*2^(-m-1).
+10
7
1, 1, 63, 16081, 10681263, 14638956721, 35941784497263, 143743469278461361, 874531783382503604463, 7687300579969605991710001, 93777824804632275267836362863, 1537173608464960118370398000894641, 32970915649974341628739088902163732463
OFFSET
0,3
COMMENTS
Number of alignments of n strings of length 3.
Conjectures: a(2*n) = 3 (mod 60) and a(2*n+1) = 1 (mod 60); for fixed k, the sequence a(n) (mod k) eventually becomes periodic with exact period a divisor of phi(k), where phi(k) is Euler's totient function A000010. - Peter Bala, Feb 04 2018
LINKS
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
FORMULA
From Vaclav Kotesovec, Mar 22 2016: (Start)
a(n) ~ 3^(2*n + 1/2) * n!^3 / (Pi * n * 2^(n+3) * (log(2))^(3*n+1)).
a(n) ~ sqrt(Pi)*3^(2*n+1/2)*n^(3*n+1/2) / (2^(n+3/2)*exp(3*n)*(log(2))^(3*n+1)).
(End)
a(n) = Sum_{k = 3..3*n} Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)* binomial(i,3)^n. Row sums of A299041. - Peter Bala, Feb 04 2018
MAPLE
A000629 := proc(n) local k ; sum( k^n/2^k, k=0..infinity) ; end: A062208 := proc(n) local a, stir, ni, n1, n2, n3, stir2, i, j, tmp ; a := 0 ; if n = 0 then RETURN(1) ; fi ; stir := combinat[partition](n) ; stir2 := {} ; for i in stir do if nops(i) <= 3 then tmp := i ; while nops(tmp) < 3 do tmp := [op(tmp), 0] ; od: tmp := combinat[permute](tmp) ; for j in tmp do stir2 := stir2 union { j } ; od: fi ; od: for ni in stir2 do n1 := op(1, ni) ; n2 := op(2, ni) ; n3 := op(3, ni) ; a := a+combinat[multinomial](n, n1, n2, n3)*(A000629(3*n1+2*n2+n3)-1/2-2^(3*n1+2*n2+n3)/4)*(-3)^n2*2^n3 ; od: a/(2*6^n) ; end: seq(A062208(n), n=0..14) ; # R. J. Mathar, Apr 01 2008
a:=proc(n) options operator, arrow: sum(binomial(m, 3)^n*2^(-m-1), m=0.. infinity) end proc: seq(a(n), n=0..12); # Emeric Deutsch, Mar 22 2008
MATHEMATICA
a[n_] = Sum[2^(-1-m)*((m-2)*(m-1)*m)^n, {m, 0, Infinity}]/6^n; a /@ Range[0, 12] (* Jean-François Alcover, Jul 13 2011 *)
With[{r = 3}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
CROSSREFS
See A062204 for further references, formulas and comments.
Row n=3 of A262809.
KEYWORD
nonn,easy
AUTHOR
Angelo Dalli, Jun 13 2001
EXTENSIONS
New definition from Vladeta Jovovic, Mar 01 2008
Edited by N. J. A. Sloane, Sep 19 2009 at the suggestion of Max Alekseyev
STATUS
approved
Number of alignments of n strings of length 4.
+10
4
1, 1, 321, 699121, 5552351121, 117029959485121, 5402040231378569121, 480086443888959812703121, 74896283763383392805211587121, 19133358944433370977791260580721121, 7581761490297442738124283591348762605121, 4461925444770180839552702516305804230194739121
OFFSET
0,3
COMMENTS
Conjectures: a(n) == 1 (mod 80); for fixed k, the sequence a(n) (mod k) eventually becomes periodic. - Peter Bala, Dec 19 2019
LINKS
FORMULA
From Vaclav Kotesovec, Mar 22 2016: (Start)
a(n) ~ 2^(5*n-3) * n!^4 / (Pi^(3/2) * n^(3/2) * 3^n * (log(2))^(4*n+1)).
a(n) ~ sqrt(Pi) * 2^(5*n-1) * n^(4*n+1/2) / (3^n * exp(4*n) * (log(2))^(4*n+1)).
(End)
It appears that a(n) = (1/(2*6^n))*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k) *A055203(n+k) for n >= 1. - Peter Bala, Dec 19 2019
MATHEMATICA
With[{r = 4}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
CROSSREFS
See A062204 for references, formulas and comments.
Row n=4 of A262809.
KEYWORD
nonn
AUTHOR
Angelo Dalli, Jun 13 2001
EXTENSIONS
Revised by Max Alekseyev, Mar 13 2009
STATUS
approved

Search completed in 0.005 seconds