login
Search: a061015 -id:a061015
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that A061015(k) is prime.
+20
1
2, 10, 18, 36, 90, 759
OFFSET
1,1
COMMENTS
a(6) > 447 for a(6) the numerator has more than 2673 digits.
a(7) > 1850. - Michael S. Branicky, Jun 27 2022
FORMULA
Numbers k such that numerator of (Sum_{i=1..k} 1/prime(i)^2) is prime
EXAMPLE
1/2^2 = 1/4 but 1 is not prime, 1/2^2 + 1/3^2 = 13/36 and 13 is prime so a(1)=2.
PROG
(PARI) sm(n)= s=0; for(i=1, n, s=s+1/(prime(i)^2)); return(s);
for (i=1, 400, if(isprime(numerator(sm(i))), print1(i, ", ")))
(Python) # uses A061015gen() and imports from A061015
from sympy import isprime
def agen():
yield from (k for k, ak in enumerate(A061015gen(), 1) if isprime(ak))
print(list(islice(agen(), 5))) # Michael S. Branicky, Jun 27 2022
CROSSREFS
Cf. A061015.
KEYWORD
hard,nonn
AUTHOR
Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 20 2004
EXTENSIONS
a(6) from Alexander Adamchuk, Sep 16 2010
STATUS
approved
a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).
+10
61
0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
OFFSET
0,3
COMMENTS
Arithmetic derivative of p#: a(n) = A003415(A002110(n)). - Reinhard Zumkeller, Feb 25 2002
(n-1)-st elementary symmetric functions of first n primes; see Mathematica section. - Clark Kimberling, Dec 29 2011
Denominators of the harmonic mean of the first n primes; A250130 gives the numerators. - Colin Barker, Nov 14 2014
Let Pn(n) = A002110 denote the primorial function. The average number of distinct prime factors <= prime(n) in the natural numbers up to Pn(n) is equal to Sum_{i = 1..n} 1/prime(i). - Jamie Morken, Sep 17 2018
Conjecture: All terms are squarefree numbers. - Nicolas Bělohoubek, Apr 13 2022
The above conjecture would imply that for n > 0, gcd(a(n), A369651(n)) = 1. See corollary 2 on the page 4 of Ufnarovski-Åhlander paper. - Antti Karttunen, Jan 31 2024
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..350 (terms n = 1..100 from T. D. Noe)
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
FORMULA
Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
a(n) = a(n-1)*A000040(n) + A002110(n-1). - Henry Bottomley, Sep 27 2006
From Antti Karttunen, Jan 31 2024 and Feb 08 2024: (Start)
a(0) = 0, for n > 0, a(n) = 2*A203008(n-1) + A070826(n).
For n > 0, a(n) = A327860(A143293(n-1)).
For n > 0, a(n) = A348301(n) + A002110(n).
For n = 3..175, a(n) = A356253(A002110(n)). [See comments in A356253.]
(End)
EXAMPLE
0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
MAPLE
h:= n-> add(1/(ithprime(i)), i=1..n);
t1:=[seq(h(n), n=0..50)];
t1a:=map(numer, t1); # A024451
t1b:=map(denom, t1); # A002110 - N. J. A. Sloane, Apr 25 2014
MATHEMATICA
a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a, 18] (* Jean-François Alcover, Apr 11 2011 *)
f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A024451 *)
(* Clark Kimberling, Dec 29 2011 *)
Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
PROG
(Magma) [ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ]; // Bruno Berselli, Apr 11 2011
(PARI) a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
(Python)
from sympy import prime
from fractions import Fraction
def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
(Python)
from math import prod
from sympy import prime
def A024451(n):
q = prod(plist:=tuple(prime(i) for i in range(1, n+1)))
return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022
CROSSREFS
Denominators are A002110.
Row sums of A077011 and A258566.
Cf. A109628 (indices k where a(k) is prime), A244622 (corresponding primes), A244621 (a(n) mod 12).
Cf. A369972 (k where prime(1+k)|a(k)), A369973 (corresponding primorials), A293457 (corresponding primes).
KEYWORD
nonn,frac,easy,nice
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Jun 26 2015
STATUS
approved
Denominator of Sum_{i=1..n} 1/prime(i)^3.
+10
11
8, 216, 27000, 9261000, 12326391000, 27081081027000, 133049351085651000, 912585499096480209000, 11103427767506874702903000, 270801499821725167129101267000, 8067447481189014453943055845197000
OFFSET
1,1
COMMENTS
Numerators are in A115963.
Also the primorials cubed. - Reikku Kulon, Sep 18 2008
FORMULA
a(n) = denominator of Sum_{i=1..n} 1/A000040(i)^3.
a(n) = A002110(n)^3. - Reikku Kulon, Sep 18 2008
EXAMPLE
1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
MATHEMATICA
a[n_]:=Product[Prime[i]^3, {i, 1, n}]; (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)
CROSSREFS
Cf. A115963 (numerators).
Cf. A024451 (numerator of sum_{i=1..n} 1/prime(i)), A002110 (primorial, also denominator of sum_{i=1..n} 1/prime(i)), A061015 (numerator of sum_{i=1..n} 1/prime(i)^2).
Cf. A061742, A100778. - Reikku Kulon, Sep 18 2008
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Mar 14 2006
STATUS
approved
Numerator of 1+1/prime(1)^2+ ... + 1/prime(n)^2 where prime(k) is the k-th prime.
+10
6
1, 5, 49, 1261, 62689, 7629469, 1294716361, 375074829229, 135662633811769, 71859617272521901, 60483708554835755641, 58166700851687469003901, 79670437976161330893757369, 133981073592392620630139873389
OFFSET
0,2
COMMENTS
The sum is similar to that in A061015 with an additional 1. The sum in the definition has limit about 1.45224742. The case of reciprocal cubes is in A075987.
For n>0 a(n) is the determinant of the n X n matrix with elements M[i,j] = 1+Prime[i]^2 if i=j and 1 otherwise. - Alexander Adamchuk, Jul 08 2006
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 94-98.
LINKS
Steven R. Finch, Meissel-Mertens Constants [Broken link]
Steven R. Finch, Meissel-Mertens Constants [From the Wayback machine]
FORMULA
a(0)=1; a(n)=a(n-1)*prime(n)^2+(prime(1)*...*prime(n-1))^2.
EXAMPLE
a(2) = 49 so a(3) = 49*p(3)^2 + (2*3)^2 = 49*25 + 36 = 1261.
MATHEMATICA
Table[Det[DiagonalMatrix[Table[Prime[i]^2, {i, 1, n}]]+1], {n, 1, 15}] (* Alexander Adamchuk, Jul 08 2006 *)
Accumulate[Join[{1}, 1/Prime[Range[20]]^2]]//Numerator (* Harvey P. Dale, May 08 2023 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Zak Seidov, Sep 28 2002
EXTENSIONS
Edited by Dean Hickerson, Sep 30 2002
STATUS
approved
Numerator of Sum_{i=1..n} 1/prime(i)^3.
+10
5
1, 35, 4591, 1601713, 2141141003, 4716413174591, 23198819007792583, 159253748925534977797, 1938552948676080555065099, 47290471293028435532185602511, 1409101231790431848106470385672201
OFFSET
1,2
COMMENTS
Denominators = A115964. See also: A024451 Numerator of Sum_{i=1..n} 1/prime(i). A002110 Primorial [denominator of Numerator of Sum_{i=1..n} 1/prime(i)]. A061015 Numerator of Sum_{i=1..n} 1/prime(i)^2.
FORMULA
a(n) = Numerator of Sum_{i=1..n} 1/A000040(i)^3.
EXAMPLE
1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Mar 14 2006
STATUS
approved
Numerator of Sum_{i=1..n} 1/(prime(i)*prime(i+1)).
+10
5
1, 7, 11, 127, 1693, 29243, 561623, 13019431, 379503437, 11809225121, 438235268123, 18007758091069, 775817745542929, 36524284093223105, 1938403609207158571, 2160165866032831207, 131893095784520401909, 8844093116997411126541, 628373208972323386101329, 45900898298568589325230523
OFFSET
1,2
COMMENTS
a(371) has 1002 decimal digits. - Michael De Vlieger, Jan 27 2016
LINKS
EXAMPLE
1/6, 7/30, 11/42, 127/462, 1693/6006, 29243/102102, 561623/1939938, 13019431/44618574, 379503437/1293938646, 11809225121/40112098026, 438235268123/1484147626962, ...
MAPLE
g:= n-> add(1/(ithprime(i)*ithprime(i+1)), i=1..n);
t1:=[seq(g(n), n=1..20)];
t1a:=map(numer, t1); # A241189
t1b:=map(denom, t1); # A241190
MATHEMATICA
Table[Numerator@ Sum[1/(Prime[i + 1] Prime@ i), {i, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *)
Accumulate[1/#&/@(Times@@@Partition[Prime[Range[25]], 2, 1])]//Numerator (* Harvey P. Dale, Mar 14 2023 *)
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Apr 25 2014, based on a suggestion from Timothy Varghese.
STATUS
approved
Numerator(1+1/prime(1)^3+ ... + 1/prime(n)^3) where prime(k) is the k-th prime.
+10
4
1, 9, 251, 31591, 10862713, 14467532003, 31797494201591, 156248170093443583, 1071839248022015186797, 13041980716182955257968099, 318091971114753602661286869511, 9476548712979446302049526230869201
OFFSET
0,2
COMMENTS
The sum in the sequence has limit 1.1747626393. The case of reciprocal squares is in A075986.
For n>0 a(n) is the determinant of the n X n matrix with elements M[i,j] = 1+prime(i)^3 if i=j and 1 otherwise. - Alexander Adamchuk, Jul 08 2006
FORMULA
a(0) = 1; a(n) = a(n-1)*prime(n)^3+(prime(1)*...*prime(n-1))^3.
EXAMPLE
a(2) = 251 so a(3) = 251*p(3)^3 + (2*3)^3 = 251*125 + 216 = 31591.
MATHEMATICA
Table[Det[DiagonalMatrix[Table[Prime[i]^3, {i, 1, n}]]+1], {n, 1, 15}] (* Alexander Adamchuk, Jul 08 2006 *)
PROG
(PARI) a(n) = numerator(1 + sum(k=1, n, 1/prime(k)^3)); \\ Michel Marcus, May 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 28 2002
STATUS
approved
Numbers k such that A115963(k) is prime.
+10
0
3, 5, 9, 43, 150, 300, 516, 1254
OFFSET
1,1
COMMENTS
A115963(n) is the numerator of Sum_{k=1..n} 1/prime(k)^3.
a(9) > 5000. - Michael S. Branicky, Aug 04 2024
MATHEMATICA
f=0; Do[p=Prime[n]; f=f+1/p^3; g=Numerator[f]; If[PrimeQ[g], Print[{n, p, g}]], {n, 1, 50}]
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Alexander Adamchuk, Feb 01 2007, Mar 01 2007
EXTENSIONS
a(6) from Alexander Adamchuk, Sep 16 2010
a(7)-a(8) from Amiram Eldar, Feb 18 2019
STATUS
approved
Least number k > 0 such that the numerator of Sum_{i=1..k} 1/prime(i)^n is a prime.
+10
0
2, 2, 3, 2, 3, 5, 3, 11, 3, 22
OFFSET
1,1
COMMENTS
a(12) > 80, a(13) = 30, a(14) = 16, a(18) = 7, a(19) = 3. - J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
a(11) > 200, a(12) > 200. - Michel Marcus, May 27 2019
If they exist, a(11) > 1263; a(17) > 954; a(22) > 795; a(23) > 720; a(25) > 570; a(12) = 799, a(15) = 313, a(16) = 780, a(20) = 433, a(21) = 7, a(24) = 4, a(27) = 12, a(29) = 37. - J.W.L. (Jan) Eerland, Jan 26 2023
EXAMPLE
a(1) = 2 corresponds to A024451(2) = 5, a prime.
a(2) = 2 corresponds to A061015(2) = 13, a prime.
MATHEMATICA
a[n_] := Block[{i = 1, sum = 0}, While[True, sum += 1/Prime[i]^n; If[PrimeQ[Numerator@sum], Return[i]]; i++ ]] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
Table[y[x_, y_]:=Numerator[FullSimplify[Sum[1/Prime[m]^x, {m, 1, y}]]]; k=1; Monitor[Parallelize[While[True, If[PrimeQ[y[n, k]], Break[]]; k++]; k], k], {n, 1, 10}] (* J.W.L. (Jan) Eerland, Jan 25 2023 *)
PROG
(PARI) a(n) = {my(k=1, s=1/prime(k)^n); while (! isprime(numerator(s)), k++; s += 1/prime(k)^n); k; } \\ Michel Marcus, May 27 2019
CROSSREFS
Cf. A024451 (1/p), A061015 (1/p^2), A115963 (1/p^3).
KEYWORD
hard,more,nonn
AUTHOR
Alexander Adamchuk, Mar 08 2007
STATUS
approved

Search completed in 0.008 seconds