login
Search: a049120 -id:a049120
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of "sets of lists": number of partitions of {1,...,n} into any number of lists, where a list means an ordered subset.
(Formerly M2950 N1190)
+10
250
1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091, 824073141, 12470162233, 202976401213, 3535017524403, 65573803186921, 1290434218669921, 26846616451246353, 588633468315403843, 13564373693588558173, 327697927886085654441, 8281153039765859726341
OFFSET
0,3
COMMENTS
Determinant of n X n matrix M=[m(i,j)] where m(i,i)=i, m(i,j)=1 if i > j, m(i,j)=i-j if j > i. - Vladeta Jovovic, Jan 19 2003
With p(n) = the number of integer partitions of n, d(i) = the number of different parts of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, Sum_{i=1..p(n)} = sum over i and Product_{j=1..d(i)} = product over j, one has: a(n) = Sum_{i=1..p(n)} n!/(Product_{j=1..d(i)} m(i,j)!). - Thomas Wieder, May 18 2005
Consider all n! permutations of the integer sequence [n] = 1,2,3,...,n. The i-th permutation, i=1,2,...,n!, consists of Z(i) permutation cycles. Such a cycle has the length lc(i,j), j=1,...,Z(i). For a given permutation we form the product of all its cycle lengths Product_{j=1..Z(i)} lc(i,j). Furthermore, we sum up all such products for all permutations of [n] which gives Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = A000262(n). For n=4 we have Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = 1*1*1*1 + 2*1*1 + 3*1 + 2*1*1 + 3*1 + 2*1 + 3*1 + 4 + 3*1 + 4 + 2*2 + 2*1*1 + 3*1 + 4 + 3*1 + 2*1*1 + 2*2 + 4 + 2*2 + 4 + 3*1 + 2*1*1 + 3*1 + 4 = 73 = A000262(4). - Thomas Wieder, Oct 06 2006
For a finite set S of size n, a chain gang G of S is a partially ordered set (S,<=) consisting only of chains. The number of chain gangs of S is a(n). For example, with S={a, b}and n=2, there are a(2)=3 chain gangs of S, namely, {(a,a),(b,b)}, {(a,a),(a,b),(b,b)} and {(a,a),(b,a),(b,b)}. - Dennis P. Walsh, Feb 22 2007
(-1)*A000262 with the first term set to 1 and A084358 form a reciprocal pair under the list partition transform and associated operations described in A133314. Cf. A133289. - Tom Copeland, Oct 21 2007
Consider the distribution of n unlabeled elements "1" onto n levels where empty levels are allowed. In addition, the empty levels are labeled. Their names are 0_1, 0_2, 0_3, etc. This sequence gives the total number of such distributions. If the empty levels are unlabeled ("0"), then the answer is A001700. Let the colon ":" separate two levels. Then, for example, for n=3 we have a(3)=13 arrangements: 111:0_1:0_2, 0_1:111:0_2, 0_1:0_2:111, 111:0_2:0_1, 0_2:111:0_1, 0_2:0_1:111, 11:1:0, 11:0:1, 0:11:1, 1:11:0, 1:0:11, 0:1:11, 1:1:1. - Thomas Wieder, May 25 2008
Row sums of exponential Riordan array [1,x/(1-x)]. - Paul Barry, Jul 24 2008
a(n) is the number of partitions of [n] (A000110) into lists of noncrossing sets. For example, a(3)=3 counts 12, 1-2, 2-1 and a(4) = 73 counts the 75 partitions of [n] into lists of sets (A000670) except for 13-24, 24-13 which fail to be noncrossing. - David Callan, Jul 25 2008
a(i-j)/(i-j)! gives the value of the non-null element (i, j) of the lower triangular matrix exp(S)/exp(1), where S is the lower triangular matrix - of whatever dimension - having all its (non-null) elements equal to one. - Giuliano Cabrele, Aug 11 2008, Sep 07 2008
a(n) is also the number of nilpotent partial one-one bijections (of an n-element set). Equivalently, it is the number of nilpotents in the symmetric inverse semigroup (monoid). - Abdullahi Umar, Sep 14 2008
A000262 is the exp transform of the factorial numbers A000142. - Thomas Wieder, Sep 10 2008
If n is a positive integer then the infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n). - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008
Vladeta Jovovic's formula dated Sep 20 2006 can be restated as follows: a(n) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) 1. - Shai Covo (green355(AT)netvision.net.il), Jan 25 2010
The umbral exponential generating function for a(n) is (1-x)^{-B}. In other words, write (1-x)^{-B} as a power series in x whose coefficients are polynomials in B, and then replace B^k with the Bell number B_k. We obtain a(0) + a(1)x + a(2)x^2/2! + ... . - Richard Stanley, Jun 07 2010
a(n) is the number of Dyck n-paths (A000108) with its peaks labeled 1,2,...,k in some order, where k is the number of peaks. For example a(2)=3 counts U(1)DU(2)D, U(2)DU(1)D, UU(1)DD where the label at each peak is in parentheses. This is easy to prove using generating functions. - David Callan, Aug 23 2011
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n} such that for 1 <= i <= n, all entries between the two i's exceed i and if any such entries are present, they include n. There are (2n-1)!! permutations satisfying the first condition, and for example: a(3)=13 counts all 5!!=15 of them except 331221 and 122133 which fail the second condition. - David Callan, Aug 27 2014_
a(n) is the number of acyclic, injective functions from subsets of [n] to [n]. Let subset D of [n] have size k. The number of acyclic, injective functions from D to [n] is (n-1)!/(n-k-1)! and hence a(n) = Sum_{k=0..n-1} binomial(n,k)*(n-1)!/(n-k-1)!. - Dennis P. Walsh, Nov 05 2015
a(n) is the number of acyclic, injective, labeled directed graphs on n vertices with each vertex having outdegree at most one. - Dennis P. Walsh, Nov 05 2015
For n > 0, a(n) is the number of labeled-rooted skinny-tree forests on n nodes. A skinny tree is a tree in which each vertex has at most one child. Let k denote the number of trees. There are binomial(n,k) ways to choose the roots, binomial(n-1,k-1) ways to choose the number of descendants for each root, and (n-k)! ways to permute those descendants. Summing over k, we obtain a(n) = Sum_{k=1..n} C(n,k)*C(n-1,k-1)*(n-k)!. - Dennis P. Walsh, Nov 10 2015
This is the Sheffer transform of the Bell numbers A000110 with the Sheffer matrix S = |Stirling1| = (1, -log(1-x)) = A132393. See the e.g.f. formula, a Feb 21 2017 comment on A048993, and R. Stanley's Jun 07 2010 comment above. - Wolfdieter Lang, Feb 21 2017
All terms = {1, 3} mod 10. - Muniru A Asiru, Oct 01 2017
We conjecture that for k = 2,3,4,..., the difference a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k is periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018
The terms of this sequence can be derived from the numerators of the fractions, produced by the recursion: b(0) = 1, b(n) = 1 + ((n-1) * b(n-1)) / (n-1 + b(n-1)) for n > 0. The denominators give A002720. - Dimitris Valianatos, Aug 01 2018
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 312, and 123. It is also the number of rooted labeled forests that avoid 312, 213, and 132, as well as the number of rooted labeled forests that avoid 132, 213, and 321. - Kassie Archer, Aug 30 2018
For n > 0, a(n) is the number of partitions of [2n-1] whose nontrivial blocks are of type {a,b}, with a <= n and b > n. In fact, for n > 0, a(n) = A056953(2n-1). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) is the number of ways to split n people into nonempty groups, have each group sit around a circular table, and select one person from each table (where two seating arrangements are considered identical if each person has the same left neighbors in both of them). - Enrique Navarrete, Oct 01 2023
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 194.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..444 (first 101 terms from T. D. Noe)
A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Ramified inverse and planar monoids, arXiv:2210.17461 [math.RT], 2022.
Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 13.
David Angell, A family of continued fractions, Journal of Number Theory, Volume 130, Issue 4, April 2010, Pages 904-911. Section 2.
Paul Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4, example 4.
Paul Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1, example 6.
Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 18.
Andreas Bärtschi, Daniel Graf, and Paolo Penna, Truthful Mechanisms for Delivery with Agents, 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OASIcs, Volume 59, 2017.
Beáta Bényi, Miguel Méndez, and José L. Ramirez, Generalized Ordered Set Partitions, arXiv:2006.02794 [math.CO], 2020.
P. Blasiak, A. Horzela, K. A. Penson, G. H. E. Duchamp, and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
P. Blasiak, K. A. Penson, and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
P. Blasiak, K. A. Penson, and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Richard P. Brent, M. L. Glasser, and Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
J.-P. Bultel, A, Chouria, J.-G. Luque, and O. Mallet, Word symmetric functions and the Redfield-Polya theorem, HAL Id: hal-00793788, 2013.
David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841 [math.CO], 2007-2008.
David Callan and Emeric Deutsch, The Run Transform, Discrete Math. 312 (2012), no. 19, 2927-2937, arXiv:1112.3639 [math.CO], 2011.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Clintin P. Davis-Stober, Jean-Paul Doignon, Samuel Fiorini, François Glineur, and Michel Regenwetter, Extended Formulations for Order Polytopes through Network Flows, arXiv:1710.02679 [math.OC], 2017.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 125.
Stefan Gerhold, Counting finite languages by total word length, INTEGERS 11 (2011), #A44.
Bai-Ni Guo and Feng Qi, An Explicit Formula for Bell Numbers in Terms of Stirling Numbers and Hypergeometric Functions, Global Journal of Mathematical Analysis, 2 (No. 4, 2014), DOI: 10.14419/gjma.v2i4.3310 (Warning, this Journal is run by the 'Science Publishing Corporation', which is listed in Jeffrey Beall's List of predatory publishers).
A. Hennessy and P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
Salvador Jacobi, Planning in Multi-Agent Systems, Thesis, Technical University of Denmark, Department of Applied Mathematics and Computer Science, 2800 Kongens Lyngby, Denmark, 2014.
D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA], 1992; The Mathematica J., 2 (1992), 67-78.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Comm. Algebra 32 (2004), 3017-3023.
Toufik Mansour, Augustine Munagi, and Mark Shattuck, Set partitions with colored singleton blocks, Discrete Mathematics Letters, 13. 100, (2024). See pp. 100-101.
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
Jean-Christophe Novelli and Jean-Yves Thibon, On composition polynomials, arXiv:1510.03033 [math.CO], 11 October 2015.
OEIS Wiki, Sorting numbers
Satya R. T. Peddada, Daniel R. Herber, Herschel C. Pangborn, Andrew G. Alleyne, and James T. Allison, Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management, J. Mech. Des. (2019) 141(8), Paper No. MD-18-1843, 083401.
K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela, and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, J. Phys. A 37 (2004), 3475-3487.
Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math.CO/0606404, Jan 05 2007.
Feng Qi, An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers, Mediterranean Journal of Mathematics, November 2015, DOI: 10.1007/s00009-015-0655-7.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
Mark A. Shattuck and Carl G. Wagner, Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.1.
Mark Shattuck, Combinatorial proofs of some Bell number formulas, arXiv preprint arXiv:1401.6588 [math.CO], 2014.
Mark Shattuck, Generalized r-Lah numbers, arXiv preprint arXiv:1412.8721 [math.CO], 2014.
Tomi Silander, Janne Leppä-aho, Elias Jääsaari, and Teemu Roos, Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures, International Conference on Artificial Intelligence and Statistics, 2018.
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126
Y. Yakubovich, Ergodicity of multiplicative statistics, Journal of Combinatorial Theory, Series A 119 (2012) 1250-1279, alternative copy.
FORMULA
D-finite with recurrence: a(n) = (2*n-1)*a(n-1) - (n-1)*(n-2)*a(n-2).
E.g.f.: exp( x/(1-x) ).
a(n) = Sum_{k=0..n} |A008275(n,k)| * A000110(k). - Vladeta Jovovic, Feb 01 2003
a(n) = (n-1)!*LaguerreL(n-1,1,-1) for n >= 1. - Vladeta Jovovic, May 10 2003
Representation as n-th moment of a positive function on positive half-axis, in Maple notation: a(n) = integral(x^n*exp(-x-1)*BesselI(1, 2*x^(1/2))/x^(1/2), x =0..infinity), n=1, 2... - Karol A. Penson, Dec 04 2003
a(n) = Sum_{k=0..n} A001263(n, k)*k!. - Philippe Deléham, Dec 10 2003
a(n) = n! Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - Herbert S. Wilf, Jun 14 2005
Asymptotic expansion for large n: a(n) -> (0.4289*n^(-1/4) + 0.3574*n^(-3/4) - 0.2531*n^(-5/4) + O(n^(-7/4)))*(n^n)*exp(-n + 2*sqrt(n)). - Karol A. Penson, Aug 28 2002
Minor part of this asymptotic expansion is wrong! Right is (in closed form): a(n) ~ n^(n-1/4)*exp(-1/2+2*sqrt(n)-n)/sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)), numerically a(n) ~ (0.42888194248*n^(-1/4) - 0.0446752023417*n^(-3/4) - 0.00884196713*n^(-5/4) + O(n^(-7/4))) *(n^n)*exp(-n+2*sqrt(n)). - Vaclav Kotesovec, Jun 02 2013
a(n) = exp(-1)*Sum_{m>=0} [m]^n/m!, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial. - Vladeta Jovovic, Sep 20 2006
Recurrence: D(n,k) = D(n-1,k-1) + (n-1+k) * D(n-1,k) n >= k >= 0; D(n,0)=0. From this, D(n,1) = n! and D(n,n)=1; a(n) = Sum_{i=0..n} D(n,i). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Proof: Notice two distinct subsets of the lists for [n]: 1) n is in its own list, then there are D(n-1,k-1); 2) n is in a list with other numbers. Denoting the separation of lists by |, it is not hard to see n has (n-1+k) possible positions, so (n-1+k) * D(n-1,k). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Define f_1(x), f_2(x), ... such that f_1(x) = exp(x), f_{n+1}(x) = (d/dx)(x^2*f_n(x)), for n >= 2. Then a(n-1) = exp(-1)*f_n(1). - Milan Janjic, May 30 2008
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k)*k!)/((n-k)!*(k-1)!), where a(0)=1. - Thomas Wieder, Sep 10 2008
a(n) = exp(-1)*n!*M(n+1,2,1), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind. - Shai Covo (green355(AT)netvision.net.il), Jan 20 2010
a(n) = n!* A067764(n) / A067653(n). - Gary Detlefs, May 15 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000110, A049118, A049119 and A049120. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Nov 17 2011, Aug 02 2012, Dec 11 2012, Jan 27 2013, Jul 31 2013, Dec 25 2013: (Start)
Continued fractions:
E.g.f.: Q(0) where Q(k) = 1+x/((1-x)*(2k+1)-x*(1-x)*(2k+1)/(x+(1-x)*(2k+2)/Q(k+1))).
E.g.f.: 1 + x/(G(0)-x) where G(k) = (1-x)*k + 1 - x*(1-x)*(k+1)/G(k+1).
E.g.f.: exp(x/(1-x)) = 4/(2-(x/(1-x))*G(0))-1 where G(k) = 1 - x^2/(x^2 + 4*(1-x)^2*(2*k+1)*(2*k+3)/G(k+1) ).
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1-x)/(1-x/(x+1/E(k+1) )).
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - x/(x + (k+1)*(1-x)/E(k+1) )).
E.g.f.: E(0)-1, where E(k) = 2 + x/( (2*k+1)*(1-x) - x/E(k+1) ).
(End)
E.g.f.: Product {n >= 1} ( (1 + x^n)/(1 - x^n) )^( phi(2*n)/(2*n) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A088009. - Peter Bala, Jan 01 2014
a(n) = n!*hypergeom([1-n],[2],-1) for n >= 1. - Peter Luschny, Jun 05 2014
a(n) = (-1)^(n-1)*KummerU(1-n,2,-1). - Peter Luschny, Sep 17 2014
a(n) = hypergeom([-n+1, -n], [], 1) for n >= 0. - Peter Luschny, Apr 08 2015
E.g.f.: Product_{k>0} exp(x^k). - Franklin T. Adams-Watters, May 11 2016
0 = a(n)*(18*a(n+2) - 93*a(n+3) + 77*a(n+4) - 17*a(n+5) + a(n+6)) + a(n+1)*(9*a(n+2) - 80*a(n+3) + 51*a(n+4) - 6*a(n+5)) + a(n+2)*(3*a(n+2) - 34*a(n+3) + 15*a(n+4)) + a(n+3)*(-10*a(n+3)) if n >= 0. - Michael Somos, Feb 27 2017
G.f. G(x)=y satisfies a differential equation: (1-x)*y-2*(1-x)*x^2*y'+x^4*y''=1. - Bradley Klee, Aug 13 2018
a(n) = n! * LaguerreL(n, -1, -1) = c_{n}(n-1; -1) where c_{n}(x; a) are the Poisson - Charlier polynomials. - G. C. Greubel, Feb 23 2021
3 divides a(3*n-1); 9 divides a(9*n-1); 11 divides a(11*n-1). - Peter Bala, Mar 26 2022
For n > 0, a(n) = Sum_{k=0..n-1}*k!*C(n-1,k)*C(n,k). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) = (n-1)! * (Sum_{i=0..n-1} A002720(i) / i!). - Werner Schulte, Mar 29 2024
EXAMPLE
Illustration of first terms as sets of ordered lists of the first n integers:
a(1) = 1 : (1)
a(2) = 3 : (12), (21), (1)(2).
a(3) = 13 : (123) (6 ways), (12)(3) (2*3 ways) (1)(2)(3) (1 way)
a(4) = 73 : (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (2*2*3 ways), (12)(3)(4) (2*6 ways), (1)(2)(3)(4) (1 way).
:
G.f. = 1 + x + 3*x^2 + 13*x^3 + 73*x^4 + 501*x^4 + 4051*x^5 + 37633*x^6 + 394353*x^7 + ...
MAPLE
A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc:
for n from 0 to 20 do printf(`%d, `, a(n)) od:
spec := [S, {S = Set(Prod(Z, Sequence(Z)))}, labeled]; [seq(combstruct[count](spec, size=n), n=0..40)];
with(combinat):seq(sum(abs(stirling1(n, k))*bell(k), k=0..n), n=0..18); # Zerinvary Lajos, Nov 26 2006
B:=[S, {S = Set(Sequence(Z, 1 <= card), card <=13)}, labelled]: seq(combstruct[count](B, size=n), n=0..19); # Zerinvary Lajos, Mar 21 2009
a := n -> `if`(n=0, 1, n!*hypergeom([1 - n], [2], -1)): seq(simplify(a(n)), n=0..19); # Peter Luschny, Jun 05 2014
MATHEMATICA
Range[0, 19]! CoefficientList[ Series[E^(x/(1-x)), {x, 0, 19}], x] (* Robert G. Wilson v, Apr 04 2005 *)
a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Exp[x/(1-x)], {x, 0, n}]]; (* Michael Somos, Jul 19 2005 *)
a[n_]:=If[n==0, 1, n! Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]]; Table[a[n], {n, 0, 30}] (* Wilf *)
a[0] = 1; a[n_]:= n!*Hypergeometric1F1[n+1, 2, 1]/E; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jun 18 2012, after Shai Covo *)
Table[Sum[BellY[n, k, Range[n]!], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Product[ QPochhammer[x^k]^(-MoebiusMu[k]/k), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 02 2019 *)
Table[n!*LaguerreL[n, -1, -1], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *)
RecurrenceTable[{a[n] == (2*n - 1)*a[n-1] - (n-1)*(n-2)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Jul 21 2022 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( x / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Feb 10 2005 */
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, eta(x^k + x * O(x^n))^( -moebius(k) / k)), n))}; /* Michael Somos, Feb 10 2005 */
(PARI) {a(n) = s = 1; for(k = 1, n-1, s = 1 + k * s / (k + s)); return( numerator(s))}; /* Dimitris Valianatos, Aug 03 2018 */
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^(-eulerphi(k) / k)), n))}; /* Michael Somos, Jun 02 2019 */
(PARI) a(n) = if (n==0, 1, (n-1)!*pollaguerre(n-1, 1, -1)); \\ Michel Marcus, Feb 23 2021; Jul 13 2024
(Maxima) makelist(sum(abs(stirling1(n, k))*belln(k), k, 0, n), n, 0, 24); /* Emanuele Munarini, Jul 04 2011 */
(Maxima) makelist(hypergeometric([-n+1, -n], [], 1), n, 0, 12); /* Emanuele Munarini, Sep 27 2016 */
(Haskell)
a000262 n = a000262_list !! n
a000262_list = 1 : 1 : zipWith (-)
(tail $ zipWith (*) a005408_list a000262_list)
(zipWith (*) a002378_list a000262_list)
-- Reinhard Zumkeller, Mar 06 2014
(Sage)
A000262 = lambda n: hypergeometric([-n+1, -n], [], 1)
[simplify(A000262(n)) for n in (0..19)] # Peter Luschny, Apr 08 2015
(GAP)
a:=[1, 1];; for n in [3..10^2] do a[n]:=(2*n-3)*a[n-1]-(n-2)*(n-3)*a[n-2]; od; A000262:=a; # Muniru A Asiru, Oct 01 2017
(Magma) I:=[1, 3]; [1] cat [n le 2 select I[n] else (2*n-1)*Self(n-1) - (n-1)*(n-2)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 14 2019
(Magma) [Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
(Python)
from sympy import hyper, hyperexpand
def A000262(n): return hyperexpand(hyper((-n+1, -n), [], 1)) # Chai Wah Wu, Jan 14 2022
CROSSREFS
Row sums of A271703 and for n >= 1 of A008297. Unsigned row sums of A111596.
A002868 is maximal element of the n-th row of A271703 and for n >= 1 of A008297.
Main diagonal of A257740 and of A319501.
KEYWORD
nonn,easy,core,nice
STATUS
approved
Triangle read by rows, the Bell transform of the quartic factorial numbers A007696(n+1) without column 0.
+10
42
1, 5, 1, 45, 15, 1, 585, 255, 30, 1, 9945, 5175, 825, 50, 1, 208845, 123795, 24150, 2025, 75, 1, 5221125, 3427515, 775845, 80850, 4200, 105, 1, 151412625, 108046575, 27478710, 3363045, 219450, 7770, 140, 1, 4996616625, 3824996175, 1069801425
OFFSET
1,2
COMMENTS
Previous name was: Triangle of numbers related to triangle A048882; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quintic (5-ary) trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007
Also the Bell transform of A007696(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
LINKS
F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
W. Lang, First 10 rows.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO]. - From N. J. A. Sloane, Aug 21 2012
E. Neuwirth, Recursively defined combinatorial Functions: Extending Galton's board, Discr. Maths. 239 (2001) 33-51.
FORMULA
a(n, m) = n!*A048882(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1; E.g.f. of m-th column: ((-1+(1-4*x)^(-1/4))^m)/m!.
a(n, m) = sum(|A051142(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to W. Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1+t*x+(5*t+t^2)*x^2/2!+(45*t+15*t^2+t^3)*x^3/3!+..., where A(x) = -1+(1-4*x)^(-1/4) satisfies the autonomous differential equation A'(x) = (1+A(x))^5.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-4*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^5*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A035469 (D = (1+x)^4*d/dx).
(End)
EXAMPLE
Triangle starts:
{1};
{5,1};
{45,15,1};
{585,255,30,1};
{9945,5175,825,50,1};
...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> mul(4*k+1, k=0..n), 9); # Peter Luschny, Jan 28 2016
MATHEMATICA
a[n_, m_] /; n >= m >= 1 := a[n, m] = (4(n-1) + m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* Jean-François Alcover, Jul 22 2011 *)
rows = 9;
a[n_, m_] := BellY[n, m, Table[Product[4k+1, {k, 0, j}], {j, 0, rows}]];
Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
CROSSREFS
a(n, m) := S2(5, n, m) is the fifth triangle of numbers in the sequence S2(1, n, m) := A008277(n, m) (Stirling 2nd kind), S2(2, n, m) := A008297(n, m) (Lah), S2(3, n, m) := A035342(n, m), S2(4, n, m) := A035469(n, m). a(n, 1)= A007696(n). A007559(n).
Cf. A048882, A007696. Row sums: A049120(n), n >= 1.
KEYWORD
easy,nonn,tabl
EXTENSIONS
New name from Peter Luschny, Jan 30 2016
STATUS
approved
A partition product of Stirling_2 type [parameter k = -5] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 5, 1, 15, 45, 1, 105, 180, 585, 1, 425, 2700, 2925, 9945, 1, 3075, 34650, 52650, 59670, 208845, 1, 15855, 308700, 1248975, 1253070, 1461915, 5221125, 1, 123515, 4475520, 23689575, 33972120, 35085960, 41769000
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -5,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134273.
Same partition product with length statistic is A049029.
Diagonal a(A000217) = A007696.
Row sum is A049120.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-4*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009
EXTENSIONS
Offset corrected by Peter Luschny, Mar 14 2009
STATUS
approved
Row sums of triangle A035342 and array A134144.
+10
6
1, 4, 25, 211, 2236, 28471, 422899, 7173580, 136750051, 2893057381, 67241818876, 1702829138209, 46659181547785, 1375237342827076, 43380198327693361, 1458027134026128691, 52014149849253158284, 1962794208713975883415
OFFSET
1,2
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2002.
P. Blasiak, A. Horzela, K. A. Penson, G.H.E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
FORMULA
E.g.f. exp(-1+1/sqrt(1-2*x))-1.
Representation of a(n) as n-th moment of a positive function on (0, infinity): a(n)=int(x^n* (x/2)^(-1/2)*exp(-x/2)*(2*hypergeom([], [3/2, 1/2], 1/8*x)/Pi^(1/2)+1/2*sqrt(2)*sqrt(x)*hypergeom([], [2, 3/2], 1/8*x))/(4*exp(1)), x=0..infinity), n=1, 2, ... - Karol A. Penson, Jun 27 2002
Asymptotic expansion for large n: a(n) -> 2^(1/6)*(n^(-1/3) + 2^(-7/3)*n^(-2/3) + O(1/n))*(2*n)^n*exp(-n+(3/2)*(2*n)^(1/3))/(sqrt(3)*exp(1)); (the nature of this approximation of a(n) is the same as that of Stirling approximation of n!). - Karol A. Penson, Sep 02 2002
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A000110, A000262, A049119 and A049120. - Peter Bala, Nov 25 2011
MATHEMATICA
a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j+k-1, k-1]*Binomial[2*n-j-k-1, n-1], {j, 0, n-k}]; a[n_] := Sum[a[n, k], {k, 1, n}]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jul 05 2013, after Emanuele Munarini *)
Table[Sum[BellY[n, k, (2 Range[n] - 1)!!], {k, n}], {n, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
PROG
(Maxima) a(n, k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1, k-1)*binomial(2*n-j-k-1, n-1), j, 0, n-k); makelist(sum(a(n, k), k, 0, n), n, 1, 12); /* Emanuele Munarini, Jun 01 2012 */
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved
Row sums of triangle A035469.
+10
5
1, 5, 41, 465, 6721, 117941, 2433145, 57673281, 1543866945, 46052954821, 1514472783561, 54426342354385, 2121878761891201, 89187219264121525, 4020175011403931801, 193438800635132796161, 9895634072548245693825
OFFSET
1,2
COMMENTS
Generalized Bell numbers B(4,1;n).
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem.
P. Blasiak, K. A. Penson and A. I. Solomon, Combinatorial coherent states via normal ordering of bosons.
FORMULA
E.g.f.: exp(-1+1/(1-3*x)^(1/3))-1.
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^4*d/dx. Cf. A000110, A000262, A049118 and A049120. - Peter Bala, Nov 25 2011
CROSSREFS
Cf. A049118, generalized Bell numbers B(3, 1, n). A049120.
KEYWORD
easy,nonn
STATUS
approved
Row sums of triangle A049385.
+10
5
1, 7, 85, 1465, 32677, 894103, 28977817, 1085272945, 46112305897, 2191384887175, 115164935076445, 6631403822046697, 415179375712149517, 28079663069162365207, 2040146099677929685345, 158473205735310372796897
OFFSET
1,2
COMMENTS
Generalized Bell numbers B(6,1;n).
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp(-1+1/(1-5*x)^(1/5))-1.
MATHEMATICA
terms = 16;
Rest[CoefficientList[Exp[-1+1/(1-5x)^(1/5)]-1+O[x]^(terms+1), x]] Range[ terms]! (* Jean-François Alcover, Nov 11 2018 *)
CROSSREFS
Cf. A049120, generalized Bell numbers B(5, 1, n).
KEYWORD
nonn
STATUS
approved
A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(5).
+10
4
1, 5, 1, 45, 15, 1, 585, 180, 75, 30, 1, 9945, 2925, 2250, 450, 375, 50, 1, 208845, 59670, 43875, 20250, 8775, 13500, 1875, 900, 1125, 75, 1, 5221125, 1461915, 1044225, 921375, 208845, 307125, 141750, 118125, 20475, 47250, 13125, 1575, 2625, 105, 1
OFFSET
1,2
COMMENTS
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_3(5), the k=5 member in the family of a generalization of the multinomial number arrays M_3 = M_3(1) = A036040.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
The S2(5,n,m):=A049029(n,m) numbers (generalized Stirling2 numbers) are obtained by summing in row n all numbers with the same part number m. In the same manner the S2(n,m) (Stirling2) numbers A008277 are obtained from the partition array M_3 = A036040.
a(n,k) enumerates unordered forests of increasing quintic (5-ary) trees related to the k-th partition of n in the A-St order. The m-forest is composed of m such trees, with m the number of parts of the partition.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Wolfdieter Lang, First 10 rows and more.
FORMULA
a(n,k) = n!*Product_{j=1..n} (S2(5,j,1)/j!)^e(n,k,j)/e(n,k,j)! with S2(5,n,1) = A049029(n,1) = A007696(n) = (4*n-3)(!^4) (quadruple- or 4-factorials) and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1.
EXAMPLE
Triangle begins:
[1];
[51];
[45,15,1];
[585,180,75,30,1];
[9945,2925,2250,450,375,50,1];
...
CROSSREFS
Cf. There are a(4, 3)=75=3*5^2 unordered 2-forest with 4 vertices, composed of two 5-ary increasing trees, each with two vertices: there are 3 increasing labelings (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3) and each tree comes in five versions from the 5-ary structure.
Cf. A049120 (row sums also of triangle A049029).
Cf. A134149 (M_3(4) array).
KEYWORD
nonn,easy,tabf,changed
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved
Alternating row sums of triangle A049029 (S2(5)).
+10
0
1, 4, 31, 359, 5546, 107249, 2492701, 67693534, 2103854581, 73651161959, 2868077514776, 122980857764819, 5758029769553101, 292305762924889804, 15992593021331060611, 938143525674896325299, 58739433900424758545186, 3910020681156059085488189
OFFSET
1,2
FORMULA
a(n) = Sum_{m=1..n} (-1)^(m+1)*A049029(n,m), n>=1.
E.g.f.: (from Jabotinsky structure): 1-exp(1-1/(1-4*x)^(1/4)).
a(n) = y(n), where y(0) = -1, y(1) = 1, y(2) = 4, y(3) = 31, y(4) = 359, and -32*k*(1 + k)*(1 + 2 k)*(1 + 4 k)*(3 + 4 k)*y(k) + (1679 + 5920 k + 8080 k^2 + 5120 k^3 + 1280 k^4)*y(k+1) + (-2550 - 4580 k - 2880 k^2 - 640 k^3)*y(k+2) + (675 + 640 k + 160 k^2)*y(k+3) + (-50 - 20 k)*y(k+4) + y(k+5) = 0. - Benedict W. J. Irwin, Jul 12 2017
MATHEMATICA
Table[DifferenceRoot[Function[{y, k}, {-32 k (1 + k) (1 + 2 k) (1 + 4 k) (3 + 4 k) y[k] + (1679 + 5920 k + 8080 k^2 + 5120 k^3 + 1280 k^4) y[1 + k] + (-2550 - 4580 k - 2880 k^2 - 640 k^3) y[2 + k] + (675 + 640 k + 160 k^2) y[3 + k] + (-50 - 20 k) y[4 + k] + y[5 + k] == 0, y[0] == -1, y[1] == 1, y[2] == 4, y[3] == 31, y[4] == 359}]][n], {n, 1, 20}] (* Benedict W. J. Irwin, Jul 12 2017 *)
CROSSREFS
Cf. A049120 (row sums).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 17 2008
STATUS
approved

Search completed in 0.015 seconds