login
Search: a041014 -id:a041014
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerators of continued fraction convergents to sqrt(6).
+10
15
2, 5, 22, 49, 218, 485, 2158, 4801, 21362, 47525, 211462, 470449, 2093258, 4656965, 20721118, 46099201, 205117922, 456335045, 2030458102, 4517251249, 20099463098, 44716177445, 198964172878, 442644523201, 1969542265682, 4381729054565, 19496458483942
OFFSET
0,1
COMMENTS
Interspersion of 2 sequences, 2*A054320 and A001079. - Gerry Martens, Jun 10 2015
FORMULA
From M. F. Hasler, Feb 13 2009: (Start)
a(2n) = 2*A142238(2n) = A041038(2n)/2;
a(2n-1) = A142238(2n-1) = A041038(2n-1) = A001079(n). (End)
G.f.: (2 + 5*x + 2*x^2 - x^3)/(1 - 10*x^2 + x^4).
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[6], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
LinearRecurrence[{0, 10, 0, -1}, {2, 5, 22, 49}, 50] (* Vincenzo Librandi, Jun 10 2015 *)
PROG
(Magma) I:=[2, 5, 22, 49]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2015
From M. F. Hasler, Nov 01 2019: (Start)
(PARI) A41006=contfracpnqn(c=contfrac(sqrt(6)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A41006[n+1]! For correct index & more terms:
A041006(n)={n<#A041006|| A041006=extend(A041006, [2, 10; 4, -1], n\.8); A041006[n+1]}
extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ (End)
CROSSREFS
Cf. A041007 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).
KEYWORD
nonn,cofr,frac,easy
EXTENSIONS
More terms from Vincenzo Librandi, Jun 10 2015
STATUS
approved
Numerators of continued fraction convergents to sqrt(7).
+10
11
2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
OFFSET
0,1
LINKS
C. Elsner, M. Stein, On Error Sum Functions Formed by Convergents of Real Numbers, J. Int. Seq. 14 (2011) # 11.8.6.
FORMULA
G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
LinearRecurrence[{0, 0, 0, 16, 0, 0, 0, -1}, {2, 3, 5, 8, 37, 45, 82, 127}, 40] (* Harvey P. Dale, Jul 23 2021 *)
PROG
From M. F. Hasler, Nov 01 2019: (Start)
(PARI) A041008=contfracpnqn(c=contfrac(sqrt(7)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ (End)
CROSSREFS
Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).
KEYWORD
nonn,cofr,frac,easy
STATUS
approved
Numerators of continued fraction convergents to sqrt(1000).
+10
8
31, 32, 63, 95, 158, 253, 1676, 3605, 8886, 136895, 282676, 702247, 4496158, 5198405, 9694563, 14892968, 24587531, 39480499, 2472378469, 2511858968, 4984237437, 7496096405, 12480333842, 19976430247, 132338915324, 284654260895, 701647437114, 10809365817605, 22320379072324
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78960998, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
MATHEMATICA
Numerator[Convergents[Sqrt[1000], 30]] (* Harvey P. Dale, Oct 29 2013 *)
PROG
From M. F. Hasler, Nov 01 2019: (Start)
(PARI) A42936=contfracpnqn(c=contfrac(sqrt(1000)), #c)[1, ][^-1] \\ Discards possibly incorrect last term. NB: a(n)=A42936[n+1]. Could be extended using: {A42936=concat(A42936, 78960998*A42936[-18..-1]-A42936[-36..-19])}
\\ But terms with arbitrarily large indices can be computed using:
A042936(n)={[A42936[n%18+i]|i<-[1, 19]]*([0, -1; 1, 78960998]^(n\18))[, 1]} \\ Faster but longer with n=divrem(n, 18). (End)
CROSSREFS
Cf. A042937 (denominators).
Analog for sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042934 (m=999).
KEYWORD
nonn,frac,easy
STATUS
approved
Numerators of continued fraction convergents to sqrt(8).
+10
7
2, 3, 14, 17, 82, 99, 478, 577, 2786, 3363, 16238, 19601, 94642, 114243, 551614, 665857, 3215042, 3880899, 18738638, 22619537, 109216786, 131836323, 636562078, 768398401, 3710155682, 4478554083, 21624372014, 26102926097, 126036076402, 152139002499
OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..199 [1 removed by Georg Fischer, Jul 01 2019]
FORMULA
a(n) = 6*a(n-2) - a(n-4).
a(2n) = a(2n-1) + a(2n-2), a(2n+1) = 4*a(2n) + a(2n-1).
a(2n) = A001333(2n), a(2n+1) = 2*A001333(2n+1).
G.f.: (2+3*x+2*x^2-x^3)/(1-6*x^2+x^4).
a(n) = A001333(n+1)*A000034(n+1). - R. J. Mathar, Jul 08 2009
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = -((3-2*sqrt(2))^n*(1+sqrt(2))) + (-1+sqrt(2))*(3+2*sqrt(2))^n.
a1(n) = ((3-2*sqrt(2))^n + (3+2*sqrt(2))^n)/2. (End)
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[8], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
CoefficientList[Series[(2 + 3*x + 2*x^2 - x^3)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 28 2013 *)
a0[n_] := -((3-2*Sqrt[2])^n*(1+Sqrt[2]))+(-1+Sqrt[2])*(3+2*Sqrt[2])^n // Simplify
a1[n_] := ((3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/2 // Simplify
Flatten[MapIndexed[{a0[#], a1[#]} &, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
PROG
From M. F. Hasler, Nov 01 2019: (Start)
(PARI) A041010=contfracpnqn(c=contfrac(sqrt(8)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041010[n+1]! For more terms use:
A041010(n)={n<#A041010|| A041010=extend(A041010, [-1, 0, 6, 0]~, n\.8); A041010[n+1]}
extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=A[n-#c..n-1]*c); A} \\ (End)
CROSSREFS
Cf. A040005 (continued fraction), A041011 (denominators), A010466 (decimals).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).
KEYWORD
nonn,cofr,frac,easy
EXTENSIONS
Entry improved by Michael Somos
Initial term 1 removed and b-file, program and formulas adapted by Georg Fischer, Jul 01 2019
Cross-references added by M. F. Hasler, Nov 02 2019
STATUS
approved
Denominators of continued fraction convergents to sqrt(11).
+10
7
1, 3, 19, 60, 379, 1197, 7561, 23880, 150841, 476403, 3009259, 9504180, 60034339, 189607197, 1197677521, 3782639760, 23893516081, 75463188003, 476672644099, 1505481120300, 9509559365899, 30034159217997
OFFSET
0,2
COMMENTS
Sqrt(11) = 3 + continued fraction [3, 6, 3, 6, 3, 6, ...] = 6/2 + 6/19 + 6/(19*379) + 6/(379*7561) + ... - Gary W. Adamson, Dec 21 2007
Let X = the 2 X 2 matrix [1, 6; 3, 19], then X^n * [1, 0] = [a(n+1), a(n+2)]; e.g., X^3 * [1, 0] = [379, 1197] = [a(4), a(5)]. - Gary W. Adamson, Dec 21 2007
FORMULA
G.f.: (1+3*x-x^2)/(1-20*x^2+x^4). - Colin Barker, Dec 31 2011
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((11+3*sqrt(11))/(10+3*sqrt(11))^n + (11-3*sqrt(11))*(10+3*sqrt(11))^n)/22.
a1(n) = 3*Sum_{i=1..n} a0(i). (End)
MATHEMATICA
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[11], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
a0[n_] := (11+3*Sqrt[11]+(11-3*Sqrt[11])*(10+3*Sqrt[11])^(2*n))/(22*(10+3*Sqrt[11])^n) // Simplify
a1[n_] := 3*Sum[a0[i], {i, 1, n}]
Flatten[MapIndexed[{a0[#], a1[#]}&, Range[11]]] (* Gerry Martens, Jul 10 2015 *)
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
STATUS
approved
Numerators of continued fraction convergents to sqrt(999).
+10
5
31, 32, 63, 95, 158, 885, 5468, 6353, 37233, 80819, 441328, 522147, 3574210, 18393197, 21967407, 40360604, 62328011, 102688615, 6429022141, 6531710756, 12960732897, 19492443653, 32453176550
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 205377230, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
a(n) = 205377230*a(n-18) - a(n-36). - Wesley Ivan Hurt, May 28 2021
MATHEMATICA
Numerator[Convergents[Sqrt[999], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
PROG
(PARI) A42934=contfracpnqn(c=contfrac(sqrt(999)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n) = A42934[n+1]! For more terms, use:
A042934(n)={n<#A42934 || A42934_upto(n+10); A42934[n+1]}
{A42934_upto(N, A=Vec(A42934, N))=for(n=#A42934+1, N, A[n]=205377230*A[n-18]-A[n-36]); A42934=A} \\ M. F. Hasler, Nov 01 2019
CROSSREFS
Cf. A042935 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).
KEYWORD
nonn,frac,easy
STATUS
approved
Coefficients of the series giving the best rational approximations to sqrt(11).
+10
5
60, 23940, 9528120, 3792167880, 1509273288180, 600686976527820, 239071907384784240, 95150018452167599760, 37869468272055319920300, 15071953222259565160679700, 5998599512991034878630600360, 2387427534217209622129818263640, 950190160018936438572789038328420
OFFSET
1,1
COMMENTS
The partial sums of the series 10/3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(11), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [3;3,6,3], [3;3,6,3,6,3], [3;3,6,3,6,3,6,3] and so forth.
FORMULA
a(n+3) = 399*a(n+2) - 399*a(n+1) + a(n).
a(n) = -5/33 + (5/66 + 1/44*11^(1/2))*(199 + 60*11^(1/2))^n + (5/66 - 1/44*11^(1/2))*(199 - 60*11^(1/2))^n.
G.f.: -60*x / ((x-1)*(x^2-398*x+1)). - Colin Barker, Jun 23 2014
MATHEMATICA
CoefficientList[Series[-60*x/((x - 1)*(x^2 - 398*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
PROG
(PARI) Vec(-60*x/((x-1)*(x^2-398*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gene Ward Smith, Oct 02 2006
EXTENSIONS
More terms from Colin Barker, Jun 23 2014
STATUS
approved
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 6*x - 2*x^2).
+10
3
1, 8, 50, 316, 1996, 12608, 79640, 503056, 3177616, 20071808, 126786080, 800860096, 5058732736, 31954116608, 201842165120, 1274961223936, 8053451673856, 50870632491008, 321330698293760, 2029725454744576
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 8 red queen vectors, i.e., A[5] vector, with decimal values 255, 383, 447, 479, 503, 507, 509 and 510. The other squares lead for these vectors to A135030.
FORMULA
G.f.: (1+2*x)/(1 - 6*x - 2*x^2).
a(n) = 6*a(n-1) + 2*a(n-2) with a(0) = 1 and a(1) = 8.
a(n) = ((5-4*A)*A^(-n-1) + (5-4*B)*B^(-n-1))/22 with A = (-3+sqrt(11))/2 and B = (-3-sqrt(11))/2.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A016116(n+1)/(A041015(n-1)*sqrt(11) - A041014(n-1)) for n >= 1.
MAPLE
with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [0, 1, 1, 1, 1, 1, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{6, 2}, {1, 8}, 50 ] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 8]; [n le 2 select I[n] else 6*Self(n-1)+2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved

Search completed in 0.049 seconds