login
Search: a040082 -id:a040082
     Sort: relevance | references | number | modified | created      Format: long | short | data
Erroneous version of A040082.
+20
0
1, 1, 1, 1, 2, 2, 22, 563, 1676257
OFFSET
0,5
LINKS
J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), 177-184. [a(7) and a(8) appear to be given incorrectly. - N. J. A. Sloane, Jan 23 2020]
KEYWORD
dead
STATUS
approved
Partial sums of A040082.
+20
0
1, 2, 3, 5, 7, 29, 593, 1676860, 115620398393, 208904486974761399, 12216177524273716236243939
OFFSET
1,2
COMMENTS
Partial sums of number of inequivalent Latin squares (or isotopy classes of Latin squares) of order n. The subsequence of primes (6 in a row) in this partial sum begins: 2, 3, 5, 7, 29, 593.
FORMULA
a(n) = SUM[i=1..n] A040082(i).
EXAMPLE
a(7) = 1 + 1 + 1 + 2 + 2 + 22 + 564 = 593 is prime.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Mar 21 2010
STATUS
approved
a(n) = 3*2^n.
(Formerly M2561)
+10
240
3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
OFFSET
0,1
COMMENTS
Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024
REFERENCES
Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
K. Bezdek and Tudor Zamfirescu, A Characterization of 3-dimensional Convex Sets with an Infinite X-ray Number, in: Coll. Math. Soc. J. Bolyai 63., Intuitive Geometry, Szeged (Hungary), North-Holland, Amsterdam, 1991, pp. 33-38.
Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
Yuri Brudnyi and Pavel Shvartsman, Generalizations of Whitney's extension theorem, International Mathematics Research Notices 1994.3 (1994): 129-139.
J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Tomislav Došlić, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
Lukas Fleischer and Jeffrey Shallit, Words With Few Palindromes, Revisited, arxiv preprint arXiv:1911.12464 [cs.FL], November 27 2019.
A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
Tanya Khovanova, Recursive Sequences
Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
Edwin Soedarmadji, Latin Hypercubes and MDS Codes, Discrete Mathematics, Volume 306, Issue 12, Jun 28 2006, Pages 1232-1239
D. Stephen, Topology on Finite Sets, American Mathematical Monthly, 75: 739 - 741, 1968.
FORMULA
G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020
MAPLE
A007283:=n->3*2^n; seq(A007283(n), n=0..50); # Wesley Ivan Hurt, Dec 03 2013
MATHEMATICA
Table[3(2^n), {n, 0, 32}] (* Alonso del Arte, Mar 24 2011 *)
PROG
(PARI) a(n)=3*2^n
(PARI) a(n)=3<<n \\ Charles R Greathouse IV, Oct 10 2012
(Magma) [3*2^n: n in [0..30]]; // Vincenzo Librandi, May 18 2011
(Haskell)
a007283 = (* 3) . (2 ^)
a007283_list = iterate (* 2) 3
-- Reinhard Zumkeller, Mar 18 2012, Feb 20 2012
(Maxima) A007283(n):=3*2^n$
makelist(A007283(n), n, 0, 30); /* Martin Ettl, Nov 11 2012 */
(Scala) (List.fill(40)(2: BigInt)).scanLeft(1: BigInt)(_ * _).map(3 * _) // Alonso del Arte, Nov 28 2019
(Python)
def A007283(n): return 3<<n # Chai Wah Wu, Feb 14 2023
CROSSREFS
Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.
KEYWORD
easy,nonn
STATUS
approved
Number of Latin squares of order n; or labeled quasigroups.
(Formerly M2051 N0812)
+10
39
1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800, 5524751496156892842531225600, 9982437658213039871725064756920320000, 776966836171770144107444346734230682311065600000
OFFSET
1,2
COMMENTS
Also the number of minimum vertex colorings in the n X n rook graph. - Eric W. Weisstein, Mar 02 2024
REFERENCES
David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ronald Alter, Research Problems: How Many Latin Squares are There?, Amer. Math. Monthly 82 (1975), no. 6, 632-634. MR1537769.
S. E. Bammel and J. Rothstein, The number of 9 X 9 Latin squares, Discrete Math., 11 (1975), 93-95.
D. Berend, On the number of Sudoku squares, Discrete Mathematics 341.11 (2018): 3241-3248. See p. 3241.
Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, Some Properties of Latin Squares, Laboratorio Emmy Noether, 2009.
Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), 177-184.
Nikhil Byrapuram, Hwiseo (Irene) Choi, Adam Ge, Selena Ge, Tanya Khovanova, Sylvia Zia Lee, Evin Liang, Rajarshi Mandal, Aika Oki, Daniel Wu, and Michael Yang, Quad Squares, arXiv:2308.07455 [math.HO], 2023.
Hai-Dang Dau and Nicolas Chopin, Waste-free Sequential Monte Carlo, arXiv:2011.02328 [stat.CO], 2020.
Abdelrahman Desoky, Hany Ammar, Gamal Fahmy, Shaker El-Sappagh, Abdeltawab Hendawi, and Sameh H. Basha, Latin Square and Artificial Intelligence Cryptography for Blockchain and Centralized Systems, Int'l Conf. Adv. Intel. Sys. Informat., Proc. 9th Int'l Conf. (AISI 2023) pp. 444-455.
Thangavelu Geetha, Amritanshu Prasad, and Shraddha Srivastava, Schur Algebras for the Alternating Group and Koszul Duality, arXiv:1902.02465 [math.RT], 2019.
E. N. Gilbert, Latin squares which contain no repeated digrams, SIAM Rev. 7 1965 189--198. MR0179095 (31 #3346). Mentions this sequence. - N. J. A. Sloane, Mar 15 2014
Yue Guan, Minjia Shi and Denis S. Krotov, The Steiner triple systems of order 21 with a transversal subdesign TD(3,6), arXiv:1905.09081 [math.CO], 2019.
Michael Han, Tanya Khovanova, Ella Kim, Evin Liang, Miriam Lubashev, Oleg Polin, Vaibhav Rastogi, Benjamin Taycher, Ada Tsui and Cindy Wei, Fun with Latin Squares, arXiv:2109.01530 [math.HO], 2021.
Yang-Hui He and Minhyong Kim, Learning Algebraic Structures: Preliminary Investigations, arXiv:1905.02263 [cs.LG], 2019.
A.-A. A. Jucys, The number of distinct Latin squares as a group-theoretical constant, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 265-272. MR0419259 (54 #7283).
Dieter Jungnickel and Vladimir D. Tonchev, Counting Steiner triple systems with classical parameters and prescribed rank, arXiv:1709.06044 [math.CO], 2017.
Lintao Liu, Xuehu Yan, Yuliang Lu, and Huaixi Wang, 2-threshold Ideal Secret Sharing Schemes Can Be Uniquely Modeled by Latin Squares, National University of Defense Technology, Hefei, China, (2019).
B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Des. 15 (2007), no. 2, 98-119.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004.
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.
J. Shao and W. Wei, A formula for the number of Latin squares., Discrete Mathematics 110 (1992) 293-296.
Minjia Shi, Li Xu, and Denis S. Krotov, The number of the non-full-rank Steiner triple systems, arXiv:1806.00009 [math.CO], 2018.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
Eric Weisstein's World of Mathematics, Latin Square.
Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
Eric Weisstein's World of Mathematics, Rook Graph.
M. B. Wells, The number of Latin squares of order 8, J. Combin. Theory, 3 (1967), 98-99.
Krasimir Yordzhev, The bitwise operations in relation to obtaining Latin squares, arXiv preprint arXiv:1605.07171 [cs.OH], 2016.
FORMULA
a(n) = n!*A000479(n) = n!*(n-1)!*A000315(n).
MATHEMATICA
Table[Length[ResourceFunction["FindProperColorings"][GraphProduct[CompleteGraph[n], CompleteGraph[n], "Cartesian"], n]], {n, 5}]
CROSSREFS
Cf. A098679 (Latin cubes).
A row of the array in A249026.
KEYWORD
hard,nonn,nice
EXTENSIONS
One more term (from the McKay-Wanless article) from Richard Bean, Feb 17 2004
STATUS
approved
Number of reduced Latin squares of order n; also number of labeled loops (quasigroups with an identity element) with a fixed identity element.
(Formerly M3690 N1508)
+10
24
1, 1, 1, 4, 56, 9408, 16942080, 535281401856, 377597570964258816, 7580721483160132811489280, 5363937773277371298119673540771840
OFFSET
1,4
COMMENTS
A reduced Latin square of order n is an n X n matrix where each row and column is a permutation of 1..n and the first row and column are 1..n in increasing order. - Michael Somos, Mar 12 2011
The Stones-Wanless (2010) paper shows among other things that a(n) is 0 mod n if n is composite and 1 mod n if n is prime.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 183.
J. Denes, A. D. Keedwell, editors, Latin Squares: new developments in the theory and applications, Elsevier, 1991, pp. 1, 388.
R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research. 6th ed., Hafner, NY, 1963, p. 22.
C. R. Rao, S. K. Mitra and A. Matthai, editors, Formulae and Tables for Statistical Work. Statistical Publishing Society, Calcutta, India, 1966, p. 193.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, pp. 37, 53.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 240.
LINKS
S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975), 93-95.
Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, Some Properties of Latin Squares, Laboratorio Emmy Noether, 2009.
Nikhil Byrapuram, Hwiseo (Irene) Choi, Adam Ge, Selena Ge, Tanya Khovanova, Sylvia Zia Lee, Evin Liang, Rajarshi Mandal, Aika Oki, Daniel Wu, and Michael Yang, Quad Squares, arXiv:2308.07455 [math.HO], 2023.
B. Cherowitzo, Latin Squares, Comb. Structures Lecture Notes.
Gheorghe Coserea, Solutions for n=5.
Gheorghe Coserea, Solutions for n=6.
E. N. Gilbert, Latin squares which contain no repeated digrams, SIAM Rev. 7 1965 189--198. MR0179095 (31 #3346). Mentions this sequence. - N. J. A. Sloane, Mar 15 2014
Brian Hopkins, Euler's Enumerations, Enumerative Combinatorics and Applications (2021) Vol. 1, No. 1, Article #S1H1.
B. D. McKay, A. Meynert and W. Myrvold, Small latin squares, quasigroups and loops, J. Combin. Designs, vol. 15, no. 2 (2007) pp. 98-119.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004.
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.
Young-Sik Moon, Jong-Yoon Yoon, Jong-Seon No, and Sang-Hyo Kim, Interference Alignment Schemes Using Latin Square for Kx3 MIMO X Channel, arXiv:1810.05400 [cs.IT], 2018.
Noah Rubin, Curtis Bright, Kevin K. H. Cheung, and Brett Stevens, Integer and Constraint Programming Revisited for Mutually Orthogonal Latin Squares, arXiv:2103.11018 [cs.DM], 2021. Mentions this sequence.
J. Shao and W. Wei, A formula for the number of Latin squares., Discrete Mathematics 110 (1992) 293-296.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
E. I. Vatutin, V. S. Titov, O. S. Zaikin, S. E. Kochemazov, S. U. Valyaev, A. D. Zhuravlev, and M. O. Manzuk, Using grid systems for enumerating combinatorial objects with example of diagonal Latin squares, Information technologies and mathematical modeling of systems (2016), pp. 154-157. (in Russian)
E. I. Vatutin, O. S. Zaikin, A. D. Zhuravlev, M. O. Manzyuk, S. E. Kochemazov, and V. S. Titov, Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares. CEUR Workshop proceedings. Selected Papers of the 7th International Conference Distributed Computing and Grid-technologies in Science and Education. 2017. Vol. 1787. pp. 486-490. urn:nbn:de:0074-1787-5.
Eric Weisstein's World of Mathematics, Latin Square.
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
FORMULA
a(n) = A002860(n) / (n! * (n-1)!) = A000479(n) / (n-1)!.
KEYWORD
nonn,hard,nice,more
EXTENSIONS
Added June 1995: the 10th term was probably first computed by Eric Rogoyski
a(11) (from the McKay-Wanless article) from Richard Bean, Feb 17 2004
STATUS
approved
Number of species (or "main classes" or "paratopy classes") of Latin squares of order n.
(Formerly M0387)
+10
13
1, 1, 1, 2, 2, 12, 147, 283657, 19270853541, 34817397894749939, 2036029552582883134196099
OFFSET
1,4
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 231.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Yue Guan, Minjia Shi, Denis S. Krotov, The Steiner triple systems of order 21 with a transversal subdesign TD(3,6), arXiv:1905.09081 [math.CO], 2019.
A. Hulpke, P. Kaski and Patric R. J. Östergård, The number of Latin squares of order 11, Math. Comp. 80 (2011) 1197-1219
Brendan D. McKay, Latin Squares (has list of all such squares)
Brendan D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs, 15 (2007), no. 2, 98-119.
Brendan D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
M. G. Palomo, Latin polytopes, arXiv preprint arXiv:1402.0772 [math.CO], 2014-2016.
Giancarlo Urzua, On line arrangements with applications to 3-nets, arXiv:0704.0469 [math.AG], 2007-2009 (see page 9).
Ian M. Wanless, A Generalization of Transversals for Latin Squares, Electronic Journal of Combinatorics, volume 9, number 1 (2002), R12.
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
CROSSREFS
KEYWORD
nonn,nice,hard
EXTENSIONS
a(9)-a(10) (from the McKay-Meynert-Myrvold article) from Richard Bean, Feb 17 2004
a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009
STATUS
approved
Number of 1-factorizations of K_{n,n}.
+10
10
1, 1, 1, 2, 24, 1344, 1128960, 12198297600, 2697818265354240, 15224734061278915461120, 2750892211809148994633229926400, 19464657391668924966616671344752852992000
OFFSET
0,4
COMMENTS
Also, number of Latin squares of order n with first row 1,2,...,n.
Also number of fixed diagonal Latin squares of order n. - Eric W. Weisstein, Dec 18 2005
Also maximum number of Latin squares of order n such that no two of them have all the same rows (respectively, columns). - Rick L. Shepherd, Mar 01 2008
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 660.
Denes and Keedwell, Latin Squares and Applications, Academic Press 1974.
LINKS
B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs 15 (2007), no. 2, 98-119.
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.
Artur Schaefer, Endomorphisms of The Hamming Graph and Related Graphs, arXiv preprint arXiv:1602.02186 [math.CO], 2016.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
E. I. Vatutin, V. S. Titov, O. S. Zaikin, S. E. Kochemazov, S. U. Valyaev, A. D. Zhuravlev, M. O. Manzuk, Using grid systems for enumerating combinatorial objects with example of diagonal Latin squares, Information technologies and mathematical modeling of systems (2016), pp. 154-157. (in Russian)
Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzyuk M.O., Kochemazov S.E., Titov V.S., Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares. CEUR Workshop proceedings. Selected Papers of the 7th International Conference Distributed Computing and Grid-technologies in Science and Education. 2017. Vol. 1787. pp. 486-490. urn:nbn:de:0074-1787-5.
Eric Weisstein's World of Mathematics, Latin Square
FORMULA
a(n) = A000315(n)*(n-1)! = A002860(n)/n!.
CROSSREFS
See A040082 and A264603 for other versions.
KEYWORD
nonn,hard,nice
EXTENSIONS
a(11) (from the McKay-Wanless article) from Richard Bean, Feb 17 2004
STATUS
approved
Number of n X n symmetric matrices whose first row is 1..n and whose rows and columns are all permutations of 1..n.
+10
10
1, 1, 1, 1, 4, 6, 456, 6240, 10936320, 1225566720, 130025295912960, 252282619805368320, 2209617218725251404267520, 98758655816833727741338583040
OFFSET
0,5
COMMENTS
The odd subsequence is A000438. The even subsequence is A035483.
LINKS
Brendan D. McKay and Ian M. Wanless, Enumeration of Latin squares with conjugate symmetry, J. Combin. Des. 30 (2022), 105-130, also on Enumeration of Latin squares with conjugate symmetry, arXiv:2104.07902 [math.CO], 2021. Table 2 p. 7.
EXAMPLE
a(3) = 1 because after 123 in the first row and column, 213 is not allowed for the second row, so it must be 231 and thus the third row is 312.
MATHEMATICA
(* This script is not suitable for n > 6 *) matrices[n_ /; n > 1] := Module[{a, t, vars}, t = Table[Which[i==1, j, j==1, i, j>i, a[i, j], True, a[j, i]], {i, n}, {j, n}]; vars = Select[Flatten[t], !IntegerQ[#]& ] // Union; t /. {Reduce[And @@ (1 <= # <= n & /@ vars) && And @@ Unequal @@@ t, vars, Integers] // ToRules}]; a[0] = a[1] = 1; a[n_] := Length[ matrices[n]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 6}] (* Jean-François Alcover, Jan 04 2016 *)
KEYWORD
nonn,more,nice
AUTHOR
Joshua Zucker and Joe Keane
EXTENSIONS
a(10)-a(13) from Ian Wanless, Oct 20 2019
STATUS
approved
a(n) is the minimum absolute value of nonzero determinants of order n Latin squares.
+10
8
1, 3, 18, 80, 75, 126, 196, 144, 405
OFFSET
1,2
COMMENTS
We apply every symbol permutation on the representatives of isotopic classes to generate Latin squares of order n and calculate the determinants.
These results are based upon work supported by the National Science Foundation under the grants numbered DMS-1852378 and DMS-1560019.
EXAMPLE
For n=2, the only Latin squares of order 2 are [[1, 2], [2, 1]] and [[2, 1], [1, 2]]. Therefore, the minimum absolute value of the determinants of order 2 Latin squares is 3.
PROG
(Sage)
# Takes a string and turns it into a square matrix of order n
def make_matrix(string, n):
m = []
row = []
for i in range(0, n * n):
if string[i] == '\n':
continue
if string[i] == ' ':
continue
row.append(Integer(string[i]) + 1)
if len(row) == n:
m.append(row)
row = []
return matrix(m)
# Reads a file and returns a list of the matrices in the file
def fetch_matrices(file_name, n):
matrices = []
with open(file_name) as f:
L = f.readlines()
for i in L:
matrices.append(make_matrix(i, n))
return matrices
# Takes a matrix and permutates each symbol in the matrix
# with the given permutation
def permute_matrix(matrix, permutation, n):
copy = deepcopy(matrix)
for i in range(0, n):
for j in range(0 , n):
copy[i, j] = permutation[copy[i][j] - 1]
return copy
"""
Creates a determinant list with the following triples,
[Isotopy Class Representative, Permutation, Determinant]
The Isotopy class representatives come from a file that
contains all Isotopy classes.
"""
def create_determinant_list(file_name, n):
the_list = []
permu = (Permutations(n)).list()
matrices = fetch_matrices(file_name, n)
for i in range(0, len(matrices)):
for j in permu:
copy = permute_matrix(matrices[i], j, n)
the_list.append([i, j, copy.determinant()])
print(len(the_list))
return the_list
# Froylan Maldonado, Jun 28 2019
CROSSREFS
Cf. A040082, A301371 (upper bound for maximum determinant of Latin squares of order n), A309258, A309984, A309985.
KEYWORD
nonn,more,hard
EXTENSIONS
a(8) from Hugo Pfoertner, Aug 24 2019
a(9) from Hugo Pfoertner, Aug 27 2019
STATUS
approved
Maximum determinant of an n X n Latin square.
+10
8
1, 1, 3, 18, 160, 2325, 41895, 961772, 26978400, 929587995
OFFSET
0,3
COMMENTS
a(n) = A301371(n) for n <= 7. a(8) < A301371(8) = 27296640, a(9) < A301371(9) = 933251220.
a(10) = 36843728625, conjectured. See Stack Exchange link. - Hugo Pfoertner, Sep 29 2019
A328030(n) <= a(n) <= A301371(n). - Hugo Pfoertner, Dec 02 2019
It is unknown, but very likely, that A301371(n) > a(n) also holds for all n > 9 - Hugo Pfoertner, Dec 12 2020
LINKS
Brendan McKay, Latin squares.
Mathematics Stack Exchange, Maximum determinant of Latin squares, (2014), (2016).
EXAMPLE
An example of an 8 X 8 Latin square with maximum determinant is
[7 1 3 4 8 2 5 6]
[1 7 4 3 6 5 2 8]
[3 4 1 7 2 6 8 5]
[4 3 7 1 5 8 6 2]
[8 6 2 5 4 7 1 3]
[2 5 6 8 7 3 4 1]
[5 2 8 6 1 4 3 7]
[6 8 5 2 3 1 7 4].
An example of a 9 X 9 Latin square with maximum determinant is
[9 4 3 8 1 5 2 6 7]
[3 9 8 5 4 6 1 7 2]
[4 1 9 3 2 8 7 5 6]
[1 2 4 9 7 3 6 8 5]
[8 3 5 6 9 7 4 2 1]
[2 7 1 4 6 9 5 3 8]
[5 8 6 7 3 2 9 1 4]
[7 6 2 1 5 4 8 9 3]
[6 5 7 2 8 1 3 4 9].
An example of a 10 X 10 Latin square with abs(determinant) = 36843728625 is a circulant matrix with first row [1, 3, 7, 9, 8, 6, 5, 4, 2, 10], but it is not known if this is the best possible. - Kebbaj Mohamed Reda, Nov 27 2019 (reworded by Hugo Pfoertner)
KEYWORD
nonn,hard,more
AUTHOR
Hugo Pfoertner, Aug 26 2019
EXTENSIONS
a(9) from Hugo Pfoertner, Aug 30 2019
a(0)=1 prepended by Alois P. Heinz, Oct 02 2019
STATUS
approved

Search completed in 0.016 seconds