login
Search: a014107 -id:a014107
     Sort: relevance | references | number | modified | created      Format: long | short | data
Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.
+10
157
1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
OFFSET
1,4
COMMENTS
Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.
EXAMPLE
Irregular triangle begins:
1;
1, 1;
3;
2, 2;
2, 2;
2, 1, 1, 2;
7;
3, 1, 1, 3;
3, 3;
3, 2, 2, 3;
12;
4, 1, 1, 1, 1, 4;
4, 4;
4, 2, 1, 1, 2, 4;
15;
5, 2, 1, 1, 2, 5;
5, 3, 5;
5, 2, 2, 2, 2, 5;
9, 9;
6, 2, 1, 1, 1, 1, 2, 6;
6, 6;
6, 3, 1, 1, 1, 1, 3, 6;
28;
7, 2, 2, 1, 1, 2, 2, 7;
7, 7;
7, 3, 2, 1, 1, 2, 3, 7;
12, 12;
8, 3, 1, 2, 2, 1, 3, 8;
8, 8, 8;
8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
31;
9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
n A000203 A237270 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 1 = 1 |_| | | | | | | | | | | | | | | |
2 3 = 3 |_ _|_| | | | | | | | | | | | | |
3 4 = 2 + 2 |_ _| _|_| | | | | | | | | | | |
4 7 = 7 |_ _ _| _|_| | | | | | | | | |
5 6 = 3 + 3 |_ _ _| _| _ _|_| | | | | | | |
6 12 = 12 |_ _ _ _| _| | _ _|_| | | | | |
7 8 = 4 + 4 |_ _ _ _| |_ _|_| _ _|_| | | |
8 15 = 15 |_ _ _ _ _| _| | _ _ _|_| |
9 13 = 5 + 3 + 5 |_ _ _ _ _| | _|_| | _ _ _|
10 18 = 9 + 9 |_ _ _ _ _ _| _ _| _| |
11 12 = 6 + 6 |_ _ _ _ _ _| | _| _| _|
12 28 = 28 |_ _ _ _ _ _ _| |_ _| _|
13 14 = 7 + 7 |_ _ _ _ _ _ _| | _ _|
14 24 = 12 + 12 |_ _ _ _ _ _ _ _| |
15 24 = 8 + 8 + 8 |_ _ _ _ _ _ _ _| |
16 31 = 31 |_ _ _ _ _ _ _ _ _|
...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
Level _ _
1 _|1|1|_
2 _|2 _|_ 2|_
3 _|2 |1|1| 2|_
4 _|3 _|1|1|_ 3|_
5 _|3 |2 _|_ 2| 3|_
6 _|4 _|1|1|1|1|_ 4|_
7 _|4 |2 |1|1| 2| 4|_
8 _|5 _|2 _|1|1|_ 2|_ 5|_
9 _|5 |2 |2 _|_ 2| 2| 5|_
10 _|6 _|2 |1|1|1|1| 2|_ 6|_
11 _|6 |3 _|1|1|1|1|_ 3| 6|_
12 _|7 _|2 |2 |1|1| 2| 2|_ 7|_
13 _|7 |3 |2 _|1|1|_ 2| 3| 7|_
14 _|8 _|3 _|1|2 _|_ 2|1|_ 3|_ 8|_
15 _|8 |3 |2 |1|1|1|1| 2| 3| 8|_
16 |9 |3 |2 |1|1|1|1| 2| 3| 9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - Omar E. Pol, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022
CROSSREFS
Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.
KEYWORD
nonn,tabf,look
AUTHOR
Omar E. Pol, Sep 26 2015
STATUS
approved
Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
+10
133
1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
OFFSET
0,4
COMMENTS
T(n,k) is the number of lattice paths from (0,0) to (n,n) with steps E = (1,0) and N = (0,1) which touch but do not cross the line x - y = k and only situated above this line; example: T(3,2) = 5 because we have EENNNE, EENNEN, EENENN, ENEENN, NEEENN. - Philippe Deléham, May 23 2005
The matrix inverse of this triangle is the triangular matrix T(n,k) = (-1)^(n+k)* A085478(n,k). - Philippe Deléham, May 26 2005
Essentially the same as A050155 except with a leading diagonal A000108 (Catalan numbers) 1, 1, 2, 5, 14, 42, 132, 429, .... - Philippe Deléham, May 31 2005
Number of Grand Dyck paths of semilength n and having k downward returns to the x-axis. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)). Example: T(3,2)=5 because we have u(d)uud(d),uud(d)u(d),u(d)u(d)du,u(d)duu(d) and duu(d)u(d) (the downward returns to the x-axis are shown between parentheses). - Emeric Deutsch, May 06 2006
Riordan array (c(x),x*c(x)^2) where c(x) is the g.f. of A000108; inverse array is (1/(1+x),x/(1+x)^2). - Philippe Deléham, Feb 12 2007
The triangle may also be generated from M^n*[1,0,0,0,0,0,0,0,...], where M is the infinite tridiagonal matrix with all 1's in the super and subdiagonals and [1,2,2,2,2,2,2,...] in the main diagonal. - Philippe Deléham, Feb 26 2007
Inverse binomial matrix applied to A124733. Binomial matrix applied to A089942. - Philippe Deléham, Feb 26 2007
Number of standard tableaux of shape (n+k,n-k). - Philippe Deléham, Mar 22 2007
From Philippe Deléham, Mar 30 2007: (Start)
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y):
(0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970
(1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877;
(1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598;
(2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954;
(3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791;
(4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. (End)
The table U(n,k) = Sum_{j=0..n} T(n,j)*k^j is given in A098474. - Philippe Deléham, Mar 29 2007
Sequence read mod 2 gives A127872. - Philippe Deléham, Apr 12 2007
Number of 2n step walks from (0,0) to (2n,2k) and consisting of step u=(1,1) and d=(1,-1) and the path stays in the nonnegative quadrant. Example: T(3,0)=5 because we have uuuddd, uududd, ududud, uduudd, uuddud; T(3,1)=9 because we have uuuudd, uuuddu, uuudud, ududuu, uuduud, uduudu, uudduu, uduuud, uududu; T(3,2)=5 because we have uuuuud, uuuudu, uuuduu, uuduuu, uduuuu; T(3,3)=1 because we have uuuuuu. - Philippe Deléham, Apr 16 2007, Apr 17 2007, Apr 18 2007
Triangular matrix, read by rows, equal to the matrix inverse of triangle A129818. - Philippe Deléham, Jun 19 2007
Let Sum_{n>=0} a(n)*x^n = (1+x)/(1-mx+x^2) = o.g.f. of A_m, then Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n. Related expansions of A_m are: A099493, A033999, A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, A097783, A077416, A126866, A028230, A161591, for m=-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, respectively. - Philippe Deléham, Nov 16 2009
The Kn11, Kn12, Fi1 and Fi2 triangle sums link the triangle given above with three sequences; see the crossrefs. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
4^n = (n-th row terms) dot (first n+1 odd integer terms). Example: 4^4 = 256 = (14, 28, 20, 7, 1) dot (1, 3, 5, 7, 9) = (14 + 84 + 100 + 49 + 9) = 256. - Gary W. Adamson, Jun 13 2011
The linear system of n equations with coefficients defined by the first n rows solve for diagonal lengths of regular polygons with N= 2n+1 edges; the constants c^0, c^1, c^2, ... are on the right hand side, where c = 2 + 2*cos(2*Pi/N). Example: take the first 4 rows relating to the 9-gon (nonagon), N = 2*4 + 1; with c = 2 + 2*cos(2*Pi/9) = 3.5320888.... The equations are (1,0,0,0) = 1; (1,1,0,0) = c; (2,3,1,0) = c^2; (5,9,5,1) = c^3. The solutions are 1, 2.53208..., 2.87938..., and 1.87938...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. (Cf. comment in A089942 which uses the analogous operations but with c = 1 + 2*cos(2*Pi/9).) - Gary W. Adamson, Sep 21 2011
Also called the Lobb numbers, after Andrew Lobb, are a natural generalization of the Catalan numbers, given by L(m,n)=(2m+1)*Binomial(2n,m+n)/(m+n+1), where n >= m >= 0. For m=0, we get the n-th Catalan number. See added reference. - Jayanta Basu, Apr 30 2013
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n, 2*k). T(n, k) appears in the formula for the (2*n)-th power of the algebraic number rho(N):= 2*cos(Pi/N) = R(N, 2) in terms of the odd-indexed diagonal/side length ratios R(N, 2*k+1) = S(2*k, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310):
rho(N)^(2*n) = Sum_{k=0..n} T(n, k)*R(N, 2*k+1), n >= 0, identical in N > = 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears.
For the odd powers of rho(n) see A039598. (End)
Unsigned coefficients of polynomial numerators of Eqn. 2.1 of the Chakravarty and Kodama paper, defining the polynomials of A067311. - Tom Copeland, May 26 2016
The triangle is the Riordan square of the Catalan numbers in the sense of A321620. - Peter Luschny, Feb 14 2023
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Quang T. Bach and Jeffrey B. Remmel, Generating functions for descents over permutations which avoid sets of consecutive patterns, arXiv:1510.04319 [math.CO], 2015 (see p.25).
M. Barnabei, F. Bonetti and M. Silimbani, Two permutation classes enumerated by the central binomial coefficients, arXiv preprint arXiv:1301.1790 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.3.8
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010), Article 10.8.2, example 15.
Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Jonathan E. Beagley and Paul Drube, Combinatorics of Tableau Inversions, Electron. J. Combin., 22 (2015), #P2.44.
S. Chakravarty and Y. Kodama, A generating function for the N-soliton solutions of the Kadomtsev-Petviashvili II equation, arXiv preprint arXiv:0802.0524v2 [nlin.SI], 2008.
Wun-Seng Chou, Tian-Xiao He, and Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, J. Int. Seqs., Vol. 21 (2018), #18.2.1.
Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 11.
Paul Drube, Generalized Path Pairs and Fuss-Catalan Triangles, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8.
T.-X. He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41, example p 32.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Thomas Koshy, Lobb's generalization of Catalan's parenthesization problem, The College Mathematics Journal 40 (2), March 2009, 99-107, DOI:10.1080/07468342.2009.11922344.
Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 11.
Andrew Lobb, Deriving the n-th Catalan number, Mathematical Gazette, Vol. 83, No. 496 (March 1999), 109-110.
Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174. See page 161.
Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016 (see 2.8).
A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414. [Annotated scan of selected pages]
Athanasios Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math., Vol. 14, No. 4 (1957), 405-414: 124. [Note: there is a typo]
Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
Wikipedia, Lobb number
W.-J. Woan, L. Shapiro and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, 104 (1997), 926-931.
Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017), 3081-3091.
FORMULA
T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
From Emeric Deutsch, May 06 2006: (Start)
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by A000012 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) = A000108(n+m)); A000108: numbers of Catalan.
T(n, 0) = A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
T(n, k) = A009766(n+k, n-k) = A033184(n+k+1, 2k+1).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n<k; T(n, 0) = T(n-1, 0) + T(n-1, 1); for k>=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 + A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) = A039598(n) otherwise.
T(n, k) = A050165(n, n-k).
Sum_{j>=0} T(n-k, j)*A039598(k, j) = A028364(n, k).
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*A085478(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000108(n), A000984(n), A007854(n), A076035(n), A076036(n) for x = 0, 1, 2, 3, 4.
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) = A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k = A127628(n).
Sum_{k=0..n} T(n,k)*7^k = A115970(n).
T(n,k) = Sum_{j=0..n-k} A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k = A126694(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A007852(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k = A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*A064310(n).
T(2*n,n) = A126596(n).
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) = A116395(n,k).
T(n,k) = Sum_{j>=0} A106566(n,j)*binomial(j,k).
T(n,k) = Sum_{j>=0} A127543(n,j)*A038207(j,k).
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A101490(n+1).
T(n,k) = A053121(2*n,2*k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k).
Sum_{j>=0} A110506(n,j)*binomial(j,k) = Sum_{j>=0} A110510(n,j)*A038207(j,k) = T(n,k)*2^(n-k).
Sum_{j>=0} A110518(n,j)*A027465(j,k) = Sum_{j>=0} A110519(n,j)*A038207(j,k) = T(n,k)*3^(n-k).
Sum_{k=0..n} T(n,k)*A001045(k) = A049027(n), for n>=1.
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*A040000(k) = A001700(n).
Sum_{k=0..n} T(n,k)*A122553(k) = A051924(n+1).
Sum_{k=0..n} T(n,k)*A123932(k) = A051944(n).
Sum_{k=0..n} T(n,k)*k^2 = A000531(n), for n>=1.
Sum_{k=0..n} T(n,k)*A000217(k) = A002457(n-1), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)= A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*A005043(k) = A127632(n).
Sum_{k=0..n} T(n,k)*A132262(k) = A089022(n).
T(n,k) + T(n,k+1) = A039598(n,k).
T(n,k) = A128899(n,k)+A128899(n,k+1).
Sum_{k=0..n} T(n,k)*A015518(k) = A076025(n), for n>=1. Also Sum_{k=0..n} T(n,k)*A015521(k) = A076026(n), for n>=1.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) = A033999(n), A000007(n), A064062(n), A110520(n), A132863(n), A132864(n), A132865(n), A132866(n), A132867(n), A132869(n), A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*(-1)^(k+1)*A000045(k) = A109262(n), A000045:= Fibonacci numbers.
Sum_{k=0..n} T(n,k)*A000035(k)*A016116(k) = A143464(n).
Sum_{k=0..n} T(n,k)*A016116(k) = A101850(n).
Sum_{k=0..n} T(n,k)*A010684(k) = A100320(n).
Sum_{k=0..n} T(n,k)*A000034(k) = A029651(n).
Sum_{k=0..n} T(n,k)*A010686(k) = A144706(n).
Sum_{k=0..n} T(n,k)*A006130(k-1) = A143646(n), with A006130(-1)=0.
T(n,2*k)+T(n,2*k+1) = A118919(n,k).
Sum_{k=0..j} T(n,k) = A050157(n,j).
Sum_{k=0..2} T(n,k) = A026012(n); Sum_{k=0..3} T(n,k)=A026029(n).
Sum_{k=0..n} T(n,k)*A000045(k+2) = A026671(n).
Sum_{k=0..n} T(n,k)*A000045(k+1) = A026726(n).
Sum_{k=0..n} T(n,k)*A057078(k) = A000012(n).
Sum_{k=0..n} T(n,k)*A108411(k) = A155084(n).
Sum_{k=0..n} T(n,k)*A057077(k) = 2^n = A000079(n).
Sum_{k=0..n} T(n,k)*A057079(k) = 3^n = A000244(n).
Sum_{k=0..n} T(n,k)*(-1)^k*A011782(k) = A000957(n+1).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*A000108(n+j). - Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*A071679(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). - Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. - Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also A160562). - Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). - Peter Luschny, May 13 2016
T(n,n-2) = A014107(n). - R. J. Mathar, Jan 30 2019
T(n,n-3) = n*(2*n-1)*(2*n-5)/3. - R. J. Mathar, Jan 30 2019
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. - R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. - R. J. Mathar, Jan 30 2019
EXAMPLE
Triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 2 3 1
3: 5 9 5 1
4: 14 28 20 7 1
5: 42 90 75 35 9 1
6: 132 297 275 154 54 11 1
7: 429 1001 1001 637 273 77 13 1
8: 1430 3432 3640 2548 1260 440 104 15 1
9: 4862 11934 13260 9996 5508 2244 663 135 17 1
... Reformatted by Wolfdieter Lang, Dec 21 2015
From Paul Barry, Feb 17 2011: (Start)
Production matrix begins
1, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1 (End)
From Wolfdieter Lang, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
MAPLE
T:=(n, k)->(2*k+1)*binomial(2*n, n-k)/(n+k+1): for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1, 1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
MATHEMATICA
Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0, 7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
Join[{1}, Flatten[Table[Binomial[2n-1, n-k]-Binomial[2n-1, n-k-2], {n, 10}, {k, 0, n}]]] (* Harvey P. Dale, Dec 18 2011 *)
Flatten[Table[Binomial[2*n, m+n]*(2*m+1)/(m+n+1), {n, 0, 9}, {m, 0, n}]] (* Jayanta Basu, Apr 30 2013 *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
# Prints the first n rows of the triangle
def A039599_triangle(n) :
D = [0]*(n+2); D[1] = 1
b = True ; h = 1
for i in range(2*n-1) :
if b :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1
else :
for k in range(1, h, 1) : D[k] += D[k+1]
if b : print([D[z] for z in (1..h-1)])
b = not b
A039599_triangle(10) # Peter Luschny, May 01 2012
(Magma) /* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
(PARI) a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
CROSSREFS
Row sums: A000984.
Triangle sums (see the comments): A000958 (Kn11), A001558 (Kn12), A088218 (Fi1, Fi2).
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
Corrected by Philippe Deléham, Nov 26 2009, Dec 14 2009
STATUS
approved
a(n) = n*(2*n + 3).
+10
56
0, 5, 14, 27, 44, 65, 90, 119, 152, 189, 230, 275, 324, 377, 434, 495, 560, 629, 702, 779, 860, 945, 1034, 1127, 1224, 1325, 1430, 1539, 1652, 1769, 1890, 2015, 2144, 2277, 2414, 2555, 2700, 2849, 3002, 3159, 3320, 3485, 3654, 3827, 4004, 4185, 4370
OFFSET
0,2
COMMENTS
If Y is a 2-subset of a 2n-set X then, for n >= 1, a(n-1) is the number of (2n-2)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
This sequence can also be derived from 1*(2+3)=5, 2*(3+4)=14, 3*(4+5)=27, and so forth. - J. M. Bergot, May 30 2011
Consider the partitions of 2n into exactly two parts. Then a(n) is the sum of all the parts in the partitions of 2n + the number of partitions of 2n + the total number of partition parts of 2n. - Wesley Ivan Hurt, Jul 02 2013
a(n) is the number of self-intersecting points of star polygon {(2*n+3)/(n+1)}. - Bui Quang Tuan, Mar 25 2015
Bisection of A000096. - Omar E. Pol, Dec 16 2016
a(n+1) is the number of function calls required to compute Ackermann's function ack(2,n). - Olivier Gérard, May 11 2018
a(n-1) is the least denominator d > n of the best rational approximation of sqrt(n^2-2) by x/d (see example and PARI code). - Hugo Pfoertner, Apr 30 2019
The number of cells in a loose n X n+1 rectangular spiral where n is even. See loose rectangular spiral image. - Jeff Bowermaster, Aug 05 2019
REFERENCES
Jolley, Summation of Series, Dover (1961).
LINKS
Jeff Bowermaster, Loose Rectangular Spiral
Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Eric Weisstein's World of Mathematics, Star Polygon
FORMULA
a(n) - 1 = A091823(n). - Howard A. Landman, Mar 28 2004
A014107(-n) = a(n), A000384(n+1) = a(n)+1. - Michael Somos, Nov 06 2005
G.f.: x*(5 - x)/(1 - x)^3. - Paul Barry, Feb 27 2003
E.g.f: x*(5 + 2*x)*exp(x). - Michael Somos, Nov 06 2005
a(n) = a(n-1) + 4*n + 1, n > 0. - Vincenzo Librandi, Nov 19 2010
a(n) = 4*A000217(n) + n. - Bruno Berselli, Feb 11 2011
Sum_{n>=1} 1/a(n) = 8/9 -2*log(2)/3 = 0.4267907685155920.. [Jolley eq. 265]
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 + log(2)/3 - Pi/6. - Amiram Eldar, Jul 03 2020
From Leo Tavares, Jan 27 2022: (Start)
a(n) = A000384(n+1) - 1. See Hex-tangles illustration.
a(n) = A014105(n) + n*2. See Second Hex-tangles illustration.
a(n) = 2*A002378(n) + n. See Ob-tangles illustration.
a(n) = A005563(n) + 2*A000217(n). See Trap-tangles illustration. (End)
EXAMPLE
a(5-1) = 44: The best approximation of sqrt(5^2-2) = sqrt(23) by x/d with d <= k is 24/5 for all k < 44, but sqrt(23) ~= 211/44 is the first improvement. - Hugo Pfoertner, Apr 30 2019
MAPLE
A014106 := proc(n) n*(2*n+3) ; end proc: # R. J. Mathar, Feb 13 2011
seq(k*(2*k+3), k=1..100); # Wesley Ivan Hurt, Jul 02 2013
MATHEMATICA
Table[n (2 n + 3), {n, 0, 120}] (* Michael De Vlieger, Apr 02 2015 *)
LinearRecurrence[{3, -3, 1}, {0, 5, 14}, 50] (* Harvey P. Dale, Jul 21 2023 *)
PROG
(PARI) a(n)=2*n^2+3*n
(PARI) \\ least denominator > n in best rational approximation of sqrt(n^2-2)
for(n=2, 47, for(k=n, oo, my(m=denominator(bestappr(sqrt(n^2-2), k))); if(m>n, print1(k, ", "); break(1)))) \\ Hugo Pfoertner, Apr 30 2019
(Magma) [n*(2*n+3): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
CROSSREFS
Cf. A091823. See A110325 for another version.
KEYWORD
nonn,easy
STATUS
approved
Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).
+10
48
0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
OFFSET
0,2
COMMENTS
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,2,.... The spiral begins:
.
56--55--54--53--52
/ \
57 33--32--31--30 51
/ / \ \
58 34 16--15--14 29 50
/ / / \ \ \
59 35 17 5---4 13 28 49
/ / / / \ \ \ \
60 36 18 6 0 3 12 27 48
/ / / / / . / / / /
61 37 19 7 1---2 11 26 47
\ \ \ \ . / / /
62 38 20 8---9--10 25 46
\ \ \ . / /
63 39 21--22--23--24 45
\ \ . /
64 40--41--42--43--44
\ .
65--66--67--68--69--70
(End)
Starting with offset 1 = binomial transform of [2, 8, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009
Number of possible pawn moves on an (n+1) X (n+1) chessboard (n=>3). - Johannes W. Meijer, Feb 04 2010
a(n) = A069905(6n-1): Number of partitions of 6*n-1 into 3 parts. - Adi Dani, Jun 04 2011
Even octagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011
Partial sums give A011379. - Omar E. Pol, Jan 12 2013
First differences are A016933; second differences equal 6. - Bob Selcoe, Apr 02 2015
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n-2; {2, 2n-1, 6, 2n-1, 2, 18n-4}]. - Magus K. Chu, Oct 13 2022
LINKS
Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16)
FORMULA
O.g.f.: A(x) = 2*x*(1+2*x)/(1-x)^3.
a(n) = A049452(n) - A033428(n). - Zerinvary Lajos, Jun 12 2007
a(n) = 2*A000326(n), twice pentagonal numbers. - Omar E. Pol, May 14 2008
a(n) = A022264(n) - A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = a(n-1) + 6*n - 4 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A014642(n)/4 = A033579(n)/2. - Omar E. Pol, Aug 19 2011
a(n) = A000290(n) + A000384(n) = A000217(n) + A000566(n). - Omar E. Pol, Jan 11 2013
a(n+1) = A014107(n+2) + A000290(n). - Philippe Deléham, Mar 30 2013
E.g.f.: x*(2 + 3*x)*exp(x). - Vincenzo Librandi, Apr 28 2016
a(n) = (2/3)*A000217(3*n-1). - Bruno Berselli, Feb 13 2017
a(n) = A002061(n) + A056220(n). - Bruce J. Nicholson, Sep 21 2017
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/2 - Pi/(2*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) - 2*log(2). (End)
From Leo Tavares, Feb 23 2022: (Start)
a(n) = A003215(n) - A016813(n).
a(n) = 2*A000290(n) + 2*A000217(n-1). (End)
EXAMPLE
On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - Johannes W. Meijer, Feb 04 2010
From Adi Dani, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
. o
. o o o
. o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. 2 10 24 44 70
- Philippe Deléham, Mar 30 2013
MAPLE
seq(n*(3*n-1), n=0..44); # Zerinvary Lajos, Jun 12 2007
MATHEMATICA
Table[n(3n-1), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 2, 10}, 50] (* Harvey P. Dale, Jun 21 2014 *)
2*PolygonalNumber[5, Range[0, 50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
PROG
(PARI) a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
(Magma) [n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
(Sage) [n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
(GAP) List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
CROSSREFS
Cf. A000567.
Bisection of A001859. Cf. A045944, A000326, A033579, A027599, A049451.
Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A002492 (Bishop).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. [Bruno Berselli, Jun 10 2013]
Cf. sequences listed in A254963.
KEYWORD
nonn,easy,nice
AUTHOR
Joe Keane (jgk(AT)jgk.org).
STATUS
approved
a(n) = n*(2*n+5).
+10
24
0, 7, 18, 33, 52, 75, 102, 133, 168, 207, 250, 297, 348, 403, 462, 525, 592, 663, 738, 817, 900, 987, 1078, 1173, 1272, 1375, 1482, 1593, 1708, 1827, 1950, 2077, 2208, 2343, 2482, 2625, 2772, 2923, 3078, 3237, 3400, 3567, 3738, 3913, 4092, 4275, 4462, 4653, 4848, 5047, 5250, 5457, 5668
OFFSET
0,2
COMMENTS
Permutations avoiding 12-3 that contain the pattern 32-1 exactly once.
a(n) = A014107(n) + 8*n^2; A100035(a(n)) = 3 for n>1. - Reinhard Zumkeller, Oct 31 2004
If Y is a 3-subset of an (2n+1)-set X then, for n>=1, a(n-1) is the number of (2n-1)-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
LINKS
FORMULA
a(n) = a(n-1) + 4*n + 3 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From L. Edson Jeffery, Oct 14 2012: (Start)
G.f.: x*(7-3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=7, a(2)=18. (End)
E.g.f.: x*(7 + 2*x)*exp(x). - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Feb 06 2022: (Start)
Sum_{n>=1} 1/a(n) = 46/75 - 2*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/10 + log(2)/5 - 26/75. (End)
MAPLE
seq(n*(2*n+5), n=0..60); # G. C. Greubel, Oct 14 2019
MATHEMATICA
Table[n*(2*n+5), {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
LinearRecurrence[{3, -3, 1}, {0, 7, 18}, 60] (* Harvey P. Dale, Nov 19 2021 *)
PROG
(PARI) a(n)=n*(2*n+5) \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [n*(2*n+5): n in [0..60]]; // G. C. Greubel, Oct 14 2019
(Sage) [n*(2*n+5) for n in (0..60)] # G. C. Greubel, Oct 14 2019
(GAP) List([0..60], n-> n*(2*n+5) ); # G. C. Greubel, Oct 14 2019
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Positions of occurrences of the natural numbers as a second subsequence in A100035.
+10
21
4, 9, 18, 31, 48, 69, 94, 123, 156, 193, 234, 279, 328, 381, 438, 499, 564, 633, 706, 783, 864, 949, 1038, 1131, 1228, 1329, 1434, 1543, 1656, 1773, 1894, 2019, 2148, 2281, 2418, 2559, 2704, 2853, 3006, 3163, 3324, 3489, 3658, 3831, 4008, 4189, 4374, 4563
OFFSET
1,1
COMMENTS
For n > 1, A100035(a(n)) = n and A100035(m) != n for a(n-1) <= m < a(n);
A100036(n) < a(n) < A100038(n) < A100039(n).
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
a(n) = 2*n^2 - n + 3 (conjectured). - Ralf Stephan, May 15 2007
EXAMPLE
First terms (10 = A, 11 = B, 12 = C) of A100035(a(n)):
...1....2........3............4................5......
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B;
a(1) = A084849(2) = 4, A100035(4) = 1;
a(2) = A014107(2) = 9, A100035(9) = 2;
a(3) = A033537(3) = 18, A100035(18) = 3;
a(4) = A100040(4) = 31, A100035(31) = 4;
a(5) = A100041(5) = 48, A100035(48) = 5.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 31 2004
STATUS
approved
Number A(n,k) of standard Young tableaux of shape [n*k,n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
19
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 9, 5, 0, 1, 4, 20, 48, 14, 0, 1, 5, 35, 154, 275, 42, 0, 1, 6, 54, 350, 1260, 1638, 132, 0, 1, 7, 77, 663, 3705, 10659, 9996, 429, 0, 1, 8, 104, 1120, 8602, 40480, 92092, 62016, 1430, 0, 1, 9, 135, 1748, 17199, 115101, 451269, 807300, 389367, 4862, 0
OFFSET
0,8
COMMENTS
A(n,k) is also the number of binary words with n*k 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The A(2,2) = 9 words are: 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100.
LINKS
Alois P. Heinz, Antidiagonals n = 0..140
Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
Wikipedia, Young tableau
FORMULA
A(n,k) = max(0, C((k+1)*n,n)*((k-1)*n+1)/(k*n+1)).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 9, 20, 35, 54, 77, ...
0, 5, 48, 154, 350, 663, 1120, ...
0, 14, 275, 1260, 3705, 8602, 17199, ...
0, 42, 1638, 10659, 40480, 115101, 272272, ...
MAPLE
A:= (n, k)-> max(0, binomial((k+1)*n, n)*((k-1)*n+1)/(k*n+1)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
a[n_, k_] := Max[0, Binomial[(k+1)*n, n]*((k-1)*n+1)/(k*n+1)]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 01 2013, after Maple *)
CROSSREFS
Main diagonal gives: A215557.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 28 2012
STATUS
approved
Positions of occurrences of the natural numbers as third subsequence in A100035.
+10
18
11, 20, 33, 50, 71, 96, 125, 158, 195, 236, 281, 330, 383, 440, 501, 566, 635, 708, 785, 866, 951, 1040, 1133, 1230, 1331, 1436, 1545, 1658, 1775, 1896, 2021, 2150, 2283, 2420, 2561, 2706, 2855, 3008, 3165, 3326, 3491, 3660, 3833, 4010, 4191, 4376, 4565
OFFSET
1,1
COMMENTS
n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m<a(n);
A100036(n) < A100037(n) < a(n) < A100039(n).
FORMULA
a(n) = 2*n^2 + 3*n + 6 (conjectured). - Ralf Stephan, May 15 2007
EXAMPLE
First terms (10=A,11=B,12=C) of A100035(a(n)):
..........1........2............3................4...
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(3) = 11, A100035(11) = 1;
a(2) = A014107(3) = 20, A100035(20) = 2;
a(3) = A033537(4) = 33, A100035(33) = 3;
a(4) = A100040(5) = 50, A100035(50) = 4;
a(5) = A100041(6) = 71, A100035(71) = 5.
CROSSREFS
Cf. A100037.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 31 2004
STATUS
approved
Positions of occurrences of the natural numbers as fourth subsequence in A100035.
+10
16
22, 35, 52, 73, 98, 127, 160, 197, 238, 283, 332, 385, 442, 503, 568, 637, 710, 787, 868, 953, 1042, 1135, 1232, 1333, 1438, 1547, 1660, 1777, 1898, 2023, 2152, 2285, 2422, 2563, 2708, 2857, 3010, 3167, 3328, 3493, 3662, 3835, 4012, 4193, 4378, 4567, 4760
OFFSET
1,1
COMMENTS
n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m<a(n);
A100036(n) < A100037(n) < A100038(n) < a(n).
FORMULA
2n^2 + 7n + 13 (conjectured). - Ralf Stephan, May 15 2007
EXAMPLE
First terms (10=A,11=B,12=C) of A100035(a(n)):
.....................1............2................3....
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(4) = 22, A100035(22) = 1;
a(2) = A014107(4) = 35, A100035(35) = 2;
a(3) = A033537(5) = 52, A100035(52) = 3;
a(4) = A100040(6) = 73, A100035(73) = 4;
a(5) = A100041(7) = 98, A100035(98) = 5.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 31 2004
STATUS
approved
Irregular triangle read by rows: row n is the expansion of (1 + 2*x - x^2)^n.
+10
13
1, 1, 2, -1, 1, 4, 2, -4, 1, 1, 6, 9, -4, -9, 6, -1, 1, 8, 20, 8, -26, -8, 20, -8, 1, 1, 10, 35, 40, -30, -68, 30, 40, -35, 10, -1, 1, 12, 54, 100, 15, -168, -76, 168, 15, -100, 54, -12, 1, 1, 14, 77, 196, 161, -238, -427, 184, 427, -238, -161, 196, -77, 14
OFFSET
0,3
COMMENTS
The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A007318(n, j)*(2*x)^j*(1 - x^2)^(n-j).
REFERENCES
Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.
Henry McKean and Victor Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge University Press, 1997, p. 106, figure 2.22.
FORMULA
Row n is made of coefficients of: (1 + 2*x - x^2)^n. - Thomas Baruchel, Jan 15 2015
From Franck Maminirina Ramaharo, Oct 13 2018: (Start)
G.f.: 1/(1 - (1 + 2*x - x^2)*y).
E.g.f.: exp((1 + 2*x - x^2)*y).
T(n,1) = A005843(n).
T(n,2) = A014107(n).
T(n,n) = A098335(n). (End)
EXAMPLE
Triangle begins:
1;
1, 2, -1;
1, 4, 2, -4, 1;
1, 6, 9, -4, -9, 6, -1;
1, 8, 20, 8, -26, -8, 20, -8, 1;
1, 10, 35, 40, -30, -68, 30, 40, -35, 10, -1;
...
MATHEMATICA
Table[CoefficientList[(-x^2 + 2*x + 1)^n, x], {n, 0, 10}]//Flatten
PROG
(Maxima) create_list(ratcoef((-x^2 + 2*x + 1)^n, x, k), n, 0, 10, k, 0, 2*n); /* Franck Maminirina Ramaharo, Oct 13 2018 */
(Sage)
def T(n): return ( (1+2*x-x^2)^n ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
CROSSREFS
Row sums: A000079 (powers of 2).
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, Oct 04 2006
EXTENSIONS
New name from Thomas Baruchel, Jan 15 2015
Edited, and offset corrected by Franck Maminirina Ramaharo, Oct 13 2018
STATUS
approved

Search completed in 0.027 seconds