login
Search: a013675 -id:a013675
     Sort: relevance | references | number | modified | created      Format: long | short | data
Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
(Formerly M0020)
+10
434
1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, 1, 5, 5, 5, 3, 4, 1, 8, 3, 8, 2, 0, 5, 7, 8, 6, 3, 1, 3, 0, 9, 0, 1, 8, 6, 4, 5, 5, 8, 7, 3, 6, 0, 9, 3, 3, 5, 2, 5, 8, 1, 4, 6, 1, 9, 9, 1, 5
OFFSET
1,2
COMMENTS
Sometimes called Apéry's constant.
"A natural question is whether Zeta(3) is a rational multiple of Pi^3. This is not known, though in 1978 R. Apéry succeeded in proving that Zeta(3) is irrational. In Chapter 8 we pointed out that the probability that two random integers are relatively prime is 6/Pi^2, which is 1/Zeta(2). This generalizes to: The probability that k random integers are relatively prime is 1/Zeta(k) ... ." [Stan Wagon]
In 2001 Tanguy Rivoal showed that there are infinitely many odd (positive) integers at which zeta is irrational, including at least one value j in the range 5 <= j <= 21 (refined the same year by Zudilin to 5 <= j <= 11), at which zeta(j) is irrational. See the Rivoal link for further information and references.
The reciprocal of this constant is the probability that three integers chosen randomly using uniform distribution are relatively prime. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2005
Also the value of zeta(1,2), the double zeta-function of arguments 1 and 2. - R. J. Mathar, Oct 10 2011
Also the length of minimal spanning tree for large complete graph with uniform random edge lengths between 0 and 1, cf. link to John Baez's comment. - M. F. Hasler, Sep 26 2017
Sum of the inverses of the cubes (A000578). - Michael B. Porter, Nov 27 2017
This number is the average value of sigma_2(n)/n^2 where sigma_2(n) is the sum of the squares of the divisors of n. - Dimitri Papadopoulos, Jan 07 2022
REFERENCES
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 40-53.
A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
R. William Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, Computers in Mathematics (Stanford CA, 1986); Lecture Notes in Pure and Appl. Math., Dekker, New York, 125 (1990), 261-284; MR 91h:11154.
Xavier Gourdon, Analyse, Les Maths en tête, Ellipses, 1994, Exemple 3, page 224.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 6 edition (2008), pp. 47, 268-269.
Paul Levrie, The Ubiquitous Apéry Number, Math. Intelligencer, Vol. 45, No. 2, 2023, pp. 118-119.
A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
Paul J. Nahin, In Pursuit of Zeta-3, Princeton University Press, 2021.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Stan Wagon, Mathematica In Action, W. H. Freeman and Company, NY, 1991, page 354.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover (1987), Ex. 92-93.
LINKS
T. Amdeberhan, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
Kunihiro Aoki and Ryo Furue, A model for the size distribution of marine microplastics: a statistical mechanics approach, arXiv:2103.10221 [physics.ao-ph], 2021.
Peter Bala, Some series for zeta(3), Nov 2023.
John Baez, Comments about zeta(3), Azimuth Project blog, August 2017.
R. Barbieri, J. A. Mignaco, and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, table II (7), (9), (19).
J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.
Mainendra Kumar Dewangan and Subhra Datta, Effective permeability tensor of confined flows with wall grooves of arbitrary shape, J. of Fluid Mechanics (2020) Vol. 891.
L. Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
X. Gourdon and P. Sebah, The Apery's constant: zeta(3).
Brady Haran and Tony Padilla, Apéry's constant (calculated with Twitter), Numberphile video (2017).
W. Janous, Around Apéry's constant, J. Inequ. Pure Appl. Math. 7(1) (2006), #35.
Yasuyuki Kachi and Pavlos Tzermias, Infinite products involving zeta(3) and Catalan's constant, Journal of Integer Sequences, 15 (2012), #12.9.4.
Masato Kobayashi, Integral representations for zeta(3) with the inverse sine function, arXiv:2108.01247 [math.NT], 2021.
M. Kondratiewa and S. Sadov, Markov's transformation of series and the WZ method, arXiv:math/0405592 [math.CA], 2004.
Tobias Kyrion, A closed-form expression for zeta(3), arXiv:2008.05573 [math.GM], 2020.
C. Lupu and D. Orr, Series representations for the Apéry constant zeta(3) involving the values zeta(2n), Ramanujan J. 48(3) (2019), 477-494.
R. J. Mathar, Yet another table of integrals, arXiv:1207.5845 [math.CA], 2012-2014.
G. P. Michon, Roger Apéry, Numericana.
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file).
A. van der Poorten, A Proof that Euler Missed.
Ernst E. Scheufens, From Fourier series to rapidly convergent series for zeta(3), Mathematics Magazine, Vol. 84, No. 1 (2011), pp. 26-32.
G. Villemin's Almanach of Numbers, Constante d'Apéry (in French).
S. Wedeniwski, The value of zeta(3) to 1000000 places [Gutenberg Project Etext].
S. Wedeniwski, Plouffe's Inverter, Apery's constant to 128000026 decimal digits.
Eric Weisstein's World of Mathematics, Apéry's Constant.
Eric Weisstein's World of Mathematics, Relatively Prime.
H. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics and Theoretical Computer Science 3(4) (1999), 189-192.
Wenzhe Yang, Apéry's irrationality proof, mirror symmetry and Beukers' modular forms, arXiv:1911.02608 [math.NT], 2019.
Wadim Zudilin, An elementary proof of Apéry's theorem, arXiv:math/0202159 [math.NT], 2002.
FORMULA
Lima gives an approximation to zeta(3) as (236*log(2)^3)/197 - 283/394*Pi*log(2)^2 + 11/394*Pi^2*log(2) + 209/394*log(sqrt(2) + 1)^3 - 5/197 + (93*Catalan*Pi)/197. - Jonathan Vos Post, Oct 14 2009 [Corrected by Wouter Meeussen, Apr 04 2010]
zeta(3) = 5/2*Integral_(x=0..2*log((1+sqrt(5))/2), x^2/(exp(x)-1)) + 10/3*(log((1+sqrt(5))/2))^3. - Seiichi Kirikami, Aug 12 2011
zeta(3) = -4/3*Integral_{x=0..1} log(x)/x*log(1+x) = Integral_{x=0..1} log(x)/x*log(1-x) = -4/7*Integral_{x=0..1} log(x)/x*log((1+x)/(1-x)) = 4*Integral_{x=0..1} 1/x*log(1+x)^2 = 1/2*Integral_{x=0..1} 1/x*log(1-x)^2 = -16/7*Integral_{x=0..Pi/2} x*log(2*cos(x)) = -4/Pi*Integral_{x=0..Pi/2} x^2*log(2*cos(x)). - Jean-François Alcover, Apr 02 2013, after R. J. Mathar
From Peter Bala, Dec 04 2013: (Start)
zeta(3) = (16/7)*Sum_{k even} (k^3 + k^5)/(k^2 - 1)^4.
zeta(3) - 1 = Sum_{k >= 1} 1/(k^3 + 4*k^7) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n - 1)^6/((2*n - 1)*(n^2 - n + 5) - ...))))) (continued fraction).
More generally, there is a sequence of polynomials P(n,x) (of degree 2*n) such that
zeta(3) - Sum_{k = 1..n} 1/k^3 = Sum_{k >= 1} 1/( k^3*P(n,k-1)*P(n,k) ) = 1/((2*n^2 + 2*n + 1) - 1^6/(3*(2*n^2 + 2*n + 3) - 2^6/(5*(2*n^2 + 2*n + 7) - 3^6/(7*(2*n^2 + 2*n + 13) - ...)))) (continued fraction). See A143003 and A143007 for details.
Series acceleration formulas:
zeta(3) = (5/2)*Sum_{n >= 1} (-1)^(n+1)/( n^3*binomial(2*n,n) )
= (5/2)*Sum_{n >= 1} P(n)/( (2*n(2*n - 1))^3*binomial(4*n,2*n) )
= (5/2)*Sum_{n >= 1} (-1)^(n+1)*Q(n)/( (3*n(3*n - 1)*(3*n - 2))^3*binomial(6*n,3*n) ), where P(n) = 24*n^3 + 4*n^2 - 6*n + 1 and Q(n) = 9477*n^6 - 11421*n^5 + 5265*n^4 - 1701*n^3 + 558*n^2 - 108*n + 8 (Bala, section 7). (End)
zeta(3) = Sum_{n >= 1} (A010052(n)/n^(3/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(3/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(3) = Product_{k>=1} 1/(1 - 1/prime(k)^3). - Vaclav Kotesovec, Apr 30 2020
zeta(3) = 4*(2*log(2) - 1 - 2*Sum_{k>=2} zeta(2*k+1)/2^(2*k+1)). - Jorge Coveiro, Jun 21 2020
zeta(3) = (4*zeta'''(1/2)*(zeta(1/2))^2-12*zeta(1/2)*zeta'(1/2)*zeta''(1/2)+8*(zeta'(1/2))^3-Pi^3*(zeta(1/2))^3)/(28*(zeta(1/2))^3). - Artur Jasinski, Jun 27 2020
zeta(3) = Sum_{k>=1} H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 31 2020
From Artur Jasinski, Sep 30 2020: (Start)
zeta(3) = (5/4)*Li_3(1/f^2) + Pi^2*log(f)/6 - 5*log(f)^3/6,
zeta(3) = (8/7)*Li_3(1/2) + (2/21)*Pi^2 log(2) - (4/21) log(2)^3, where f is golden ratio (A001622) and Li_3 is the polylogarithm function, formulas published by John Landen in 1780, p. 118. (End)
zeta(3) = (1/2)*Integral_{x=0..oo} x^2/(e^x-1) dx (Gourdon). - Bernard Schott, Apr 28 2021
From Peter Bala, Jan 18 2022: (Start)
zeta(3) = 1 + Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)) = 25/24 + (2!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)) = 28333/27000 + (3!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)*(4*n^4 + 3^4)). In general, for k >= 1, we have zeta(3) = r(k) + (k!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*...*(4*n^4 + k^4)), where r(k) is rational.
zeta(3) = (6/7) + (64/7)*Sum_{n >= 1} n/(4*n^2 - 1)^3.
More generally, for k >= 0, it appears that zeta(3) = a(k) + b(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^3, where a(k) and b(k) are rational.
zeta(3) = (10/7) - (128/7)*Sum_{n >= 1} n/(4*n^2 - 1)^4.
More generally, for k >= 0, it appears that zeta(3) = c(k) + d(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^4, where c(k) and d(k) are rational. [added Nov 27 2023: for the values of a(k), b(k), c(k) and d(k) see the Bala 2023 link, Sections 8 and 9.]
zeta(3) = 2/3 + (2^13)/(3*7)*Sum_{n >= 1} n^3/(4*n^2 - 1)^6. (End)
zeta(3) = -Psi(2)(1/2)/14 (the second derivative of digamma function evaluated at 1/2). - Artur Jasinski, Mar 18 2022
zeta(3) = -(8*Pi^2/9) * Sum_{k>=0} zeta(2*k)/((2*k+1)*(2*k+3)*4^k) = (2*Pi^2/9) * (log(2) + 2 * Sum_{k>=0} zeta(2*k)/((2*k+3)*4^k)) (Scheufens, 2011, Glasser Math. Comp. 22 1968). - Amiram Eldar, May 28 2022
zeta(3) = Sum_{k>=1} (30*k-11) / (4*(2k-1)*k^3*(binomial(2k,k))^2) (Gosper, 1986 and Richard K. Guy reference). - Bernard Schott, Jul 20 2022
zeta(3) = (4/3)*Integral_{x >= 1} x*log(x)*(1 + log(x))*log(1 + 1/x^x) dx = (2/3)*Integral_{x >= 1} x^2*log(x)^2*(1 + log(x))/(1 + x^x) dx. - Peter Bala, Nov 27 2023
zeta_3(n) = 1/180*(-360*n^3*f(-3, n/4) + Pi^3*(n^4 + 20*n^2 + 16))/(n*(n^2 + 4)), where f(-3, n) = Sum_{k>=1} 1/(k^3*(exp(Pi*k/n) - 1)). Will give at least 1 digit of precision/term, example: zeta_3(5) = 1.202056944732.... - Simon Plouffe, Dec 21 2023
zeat(3) = 1 + (1/2)*Sum_{n >= 1} (2*n + 1)/(n^3*(n + 1)^3) = 5/4 - (1/4)*Sum_{n >= 1} (2*n + 1)/(n^4*(n + 1)^4) = 147/120 + (2/15)*Sum_{n >= 1} (2*n + 1)/(n^5*(n + 1)^5) - (64/15)*Sum_{n >= 1} (n + 1)/(n^5*(n + 2)^5) = 19/16 + (128/21)*Sum_{n >= 1} (n + 1)/(n^6*(n + 2)^6) - (1/21)*Sum_{n >= 1} (2*n + 1)/(n^6*(n + 1)^6). - Peter Bala, Apr 15 2024
EXAMPLE
1.2020569031595942853997...
MAPLE
# Calculates an approximation with n exact decimal places (small deviation
# in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
zeta3 := proc(n) local s, w, v, k; s := 0; w := -1; v := 4;
for k from 2 by 2 to 7*n/2 do
w := -w*v/k;
v := v + 8;
s := s + 1/(w*k^3);
od; 20*s; evalf(%, n) end:
zeta3(10000); # Peter Luschny, Jun 10 2020
MATHEMATICA
RealDigits[ N[ Zeta[3], 100] ] [ [1] ]
(* Second program (historical interest): *)
d[n_] := 34*n^3 + 51*n^2 + 27*n + 5; 6/Fold[Function[d[#2-1] - #2^6/#1], 5, Reverse[Range[100]]] // N[#, 108]& // RealDigits // First
(* Jean-François Alcover, Sep 19 2014, after Apéry's continued fraction *)
PROG
(PARI) default(realprecision, 20080); x=zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002117.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
(Maxima) fpprec : 100$ ev(bfloat(zeta(3)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
(Python)
from mpmath import mp, apery
mp.dps=109
print([int(z) for z in list(str(apery).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017
(Magma) L:=RiemannZeta(: Precision:=100); Evaluate(L, 3); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8; A233091: 7*zeta(3)/8.
Cf. A000578 (cubes).
Cf. sums of inverses: A152623 (tetrahedral numbers), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).
KEYWORD
cons,nonn,nice
EXTENSIONS
More terms from David W. Wilson
Additional comments from Robert G. Wilson v, Dec 08 2000
Quotation from Stan Wagon corrected by N. J. A. Sloane on Dec 24 2005. Thanks to Jose Brox for noticing this error.
Edited by M. F. Hasler, Sep 26 2017
STATUS
approved
Decimal expansion of zeta(5).
+10
125
1, 0, 3, 6, 9, 2, 7, 7, 5, 5, 1, 4, 3, 3, 6, 9, 9, 2, 6, 3, 3, 1, 3, 6, 5, 4, 8, 6, 4, 5, 7, 0, 3, 4, 1, 6, 8, 0, 5, 7, 0, 8, 0, 9, 1, 9, 5, 0, 1, 9, 1, 2, 8, 1, 1, 9, 7, 4, 1, 9, 2, 6, 7, 7, 9, 0, 3, 8, 0, 3, 5, 8, 9, 7, 8, 6, 2, 8, 1, 4, 8, 4, 5, 6, 0, 0, 4, 3, 1, 0, 6, 5, 5, 7, 1, 3, 3, 3, 3
OFFSET
1,3
COMMENTS
In a widely distributed May 2011 email, Wadim Zudilin gave a rebuttal to v1 of Kim's 2011 preprint: "The mistake (unfixable) is on p. 6, line after eq. (3.3). 'Without loss of generality' can be shown to work only for a finite set of n_k's; as the n_k are sufficiently large (and N is fixed), the inequality for epsilon is false." In a May 2013 email, Zudilin extended his rebuttal to cover v2, concluding that Kim's argument "implies that at least one of zeta(2), zeta(3), zeta(4) and zeta(5) is irrational, which is trivial." - Jonathan Sondow, May 06 2013
General: zeta(2*s + 1) = (A000364(s)/A331839(s)) * Pi^(2*s + 1) * Product_{k >= 1} (A002145(k)^(2*s + 1) + 1)/(A002145(k)^(2*s + 1) - 1), for s >= 1. - Dimitris Valianatos, Apr 27 2020
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Michael J. Dancs and Tian-Xiao He, An Euler-type formula for zeta(2k+1), Journal of Number Theory, Volume 118, Issue 2, June 2006, Pages 192-199.
Robert J. Harley, Zeta(3), Zeta(5), .., Zeta(99) 10000 digits (txt, 400 KB).
Yong-Cheol Kim, zeta(5) is irrational, arXiv:1105.0730 [math.CA], 2011. [Jonathan Vos Post, May 4, 2011].
Simon Plouffe, Computation of Zeta(5)
Simon Plouffe, Other interesting computations at numberworld.org.
Wikipedia, Zeta constant
Wadim Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russ. Math. Surv., 56 (2001), 774-776.
FORMULA
From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(5) = Sum_{n >= 1} 1/n^5.
zeta(5) = 2^5/(2^5 - 1)*(Sum_{n even} n^5*p(n)*p(1/n)/(n^2 - 1)^6 ), where p(n) = n^2 + 3. See A013667, A013671 and A013675. (End)
zeta(5) = Sum_{n >= 1} (A010052(n)/n^(5/2)) = Sum_{n >= 1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n^(5/2)). - Mikael Aaltonen, Feb 22 2015
zeta(5) = Product_{k>=1} 1/(1 - 1/prime(k)^5). - Vaclav Kotesovec, Apr 30 2020
From Artur Jasinski, Jun 27 2020: (Start)
zeta(5) = (-1/30)*Integral_{x=0..1} log(1-x^4)^5/x^5.
zeta(5) = (1/24)*Integral_{x=0..infinity} x^4/(exp(x)-1).
zeta(5) = (2/45)*Integral_{x=0..infinity} x^4/(exp(x)+1).
zeta(5) = (1/(1488*zeta(1/2)^5))*(-5*Pi^5*zeta(1/2)^5 + 96*zeta'(1/2)^5 - 240*zeta(1/2)*zeta'(1/2)^3*zeta''(1/2) + 120*zeta(1/2)^2*zeta'(1/2)*zeta''(1/2)^2 + 80*zeta(1/2)^2*zeta'(1/2)^2*zeta'''(1/2)- 40*zeta(1/2)^3*zeta''(1/2)*zeta'''(1/2) - 20*zeta(1/2)^3*zeta'(1/2)*zeta''''(1/2)+4*zeta(1/2)^4*zeta'''''(1/2)). (End).
From Peter Bala, Oct 29 2023: (Start)
zeta(3) = (8/45)*Integral_{x >= 1} x^3*log(x)^3*(1 + log(x))*log(1 + 1/x^x) dx = (2/45)*Integral_{x >= 1} x^4*log(x)^4*(1 + log(x))/(1 + x^x) dx.
zeta(5) = 131/128 + 26*Sum_{n >= 1} (n^2 + 2*n + 40/39)/(n*(n + 1)*(n + 2))^5.
zeta(5) = 5162893/4976640 - 1323520*Sum_{n >= 1} (n^2 + 4*n + 56288/12925)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4))^5. Taking 10 terms of the series gives a value for zeta(5) correct to 20 decimal places.
Conjecture: for k >= 1, there exist rational numbers A(k), B(k) and c(k) such that zeta(5) = A(k) + B(k)*Sum_{n >= 1} (n^2 + 2*k*n + c(k))/(n*(n + 1)*...*(n + 2*k))^5. A similar conjecture can be made for the constant zeta(3). (End)
zeta(5) = (694/204813)*Pi^5 - Sum_{n >= 1} (6280/3251)*(1/(n^5*(exp(4*Pi*n)-1))) + Sum_{n >= 1} (296/3251)*(1/(n^5*(exp(5*Pi*n)-1))) - Sum_{n >= 1} (1073/6502)*(1/(n^5*(exp(10*Pi*n)-1))) + Sum_{n >= 1} (37/6502)*(1/(n^5*(exp(20*Pi*n)-1))). - Simon Plouffe, Jan 06 2024
EXAMPLE
1/1^5 + 1/2^5 + 1/3^5 + 1/4^5 + 1/5^5 + 1/6^5 + 1/7^5 + ... =
1 + 1/32 + 1/243 + 1/1024 + 1/3125 + 1/7776 + 1/16807 + ... = 1.036927755143369926331365486457...
MATHEMATICA
RealDigits[Zeta[5], 10, 100][[1]] (* Alonso del Arte, Jan 13 2012 *)
PROG
(PARI) zeta(5) \\ Michel Marcus, Apr 17 2016
KEYWORD
nonn,cons
STATUS
approved
Decimal expansion of zeta(9).
+10
58
1, 0, 0, 2, 0, 0, 8, 3, 9, 2, 8, 2, 6, 0, 8, 2, 2, 1, 4, 4, 1, 7, 8, 5, 2, 7, 6, 9, 2, 3, 2, 4, 1, 2, 0, 6, 0, 4, 8, 5, 6, 0, 5, 8, 5, 1, 3, 9, 4, 8, 8, 8, 7, 5, 6, 5, 4, 8, 5, 9, 6, 6, 1, 5, 9, 0, 9, 7, 8, 5, 0, 5, 3, 3, 9, 0, 2, 5, 8, 3, 9, 8, 9, 5, 0, 3, 9, 3, 0, 6, 9, 1, 2, 7, 1, 6, 9, 5, 8
OFFSET
1,4
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Simon Plouffe, Plouffe's Inverter, Zeta(9)=sum(1/n^9, n=1..infinity); to 20000 digits
FORMULA
From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(9) = sum {n >= 1} 1/n^9.
zeta(9) = 2^9/(2^9 - 1)*( sum {n even} n^7*p(n)*p(1/n)/(n^2 - 1)^10 ), where p(n) = n^4 + 10*n^2 + 5. See A013663, A013671 and A013675. (End)
zeta(9) = Sum_{n >= 1} (A010052(n)/n^(9/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(9/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(9) = Product_{k>=1} 1/(1 - 1/prime(k)^9). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0020083928260822...
MAPLE
evalf(Zeta(9)) ; # R. J. Mathar, Oct 16 2015
MATHEMATICA
RealDigits[Zeta[9], 10, 100][[1]] (* Harvey P. Dale, Aug 27 2014 *)
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of zeta(11).
+10
41
1, 0, 0, 0, 4, 9, 4, 1, 8, 8, 6, 0, 4, 1, 1, 9, 4, 6, 4, 5, 5, 8, 7, 0, 2, 2, 8, 2, 5, 2, 6, 4, 6, 9, 9, 3, 6, 4, 6, 8, 6, 0, 6, 4, 3, 5, 7, 5, 8, 2, 0, 8, 6, 1, 7, 1, 1, 9, 1, 4, 1, 4, 3, 6, 1, 0, 0, 0, 5, 4, 0, 5, 9, 7, 9, 8, 2, 1, 9, 8, 1, 4, 7, 0, 2, 5, 9, 1, 8, 4, 3, 0, 2, 3, 5, 6, 0, 6, 2
OFFSET
1,5
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Jonathan Borwein and David Bradley, Empirically determined Apéry-like formulae for zeta(4n+3), Experimental Mathematics, Vol. 6, No. 3 (1997), pp. 181-194; arXiv preprint, arXiv:math/0505124 [math.CA], 2005.
FORMULA
zeta(11) = Sum_{n >= 1} (A010052(n)/n^(11/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(11/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(11) = Product_{k>=1} 1/(1 - 1/prime(k)^11). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0004941886041194645587022825264699364686064357582...
MAPLE
evalf(Zeta(11), 150) ; # R. J. Mathar, Oct 16 2015
MATHEMATICA
RealDigits[Zeta[11], 10, 120][[1]] (* Amiram Eldar, Jun 11 2023 *)
PROG
(PARI) zeta(11) \\ Charles R Greathouse IV, Apr 25 2016
KEYWORD
cons,nonn
EXTENSIONS
a(99) corrected by Sean A. Irvine, Sep 05 2018
STATUS
approved
Decimal expansion of zeta(13).
+10
24
1, 0, 0, 0, 1, 2, 2, 7, 1, 3, 3, 4, 7, 5, 7, 8, 4, 8, 9, 1, 4, 6, 7, 5, 1, 8, 3, 6, 5, 2, 6, 3, 5, 7, 3, 9, 5, 7, 1, 4, 2, 7, 5, 1, 0, 5, 8, 9, 5, 5, 0, 9, 8, 4, 5, 1, 3, 6, 7, 0, 2, 6, 7, 1, 6, 2, 0, 8, 9, 6, 7, 2, 6, 8, 2, 9, 8, 4, 4, 2, 0, 9, 8, 1, 2, 8, 9, 2, 7, 1, 3, 9, 5, 3, 2, 6, 8, 1, 3
OFFSET
1,6
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(13) = sum {n >= 1} 1/n^13.
zeta(13) = 2^13/(2^13 - 1)*( sum {n even} n^9*p(n)*p(1/n)/(n^2 - 1)^14 ), where p(n) = n^6 + 21*n^4 + 35*n^2 + 7. (End)
zeta(13) = Sum_{n >= 1} (A010052(n)/n^(13/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(13/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(13) = Product_{k>=1} 1/(1 - 1/prime(k)^13). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0001227133475784891467518365263573957142751058955098451367026716208967...
MATHEMATICA
RealDigits[Zeta[13], 10, 120][[1]] (* Harvey P. Dale, Dec 24 2016 *)
PROG
(PARI) zeta(13) \\ Charles R Greathouse IV, Apr 25 2016
KEYWORD
cons,nonn
AUTHOR
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(16).
+10
19
1, 6, 9, 8, 1, 8, 3, 9, 7, 8, 4, 2, 7, 7, 5, 6, 0, 7, 7, 4, 7, 3, 0, 9, 5, 5, 1, 6, 8, 3, 1, 2, 7, 1, 1, 8, 7, 9, 5, 1, 5, 2, 9, 1, 4, 2, 8, 6, 3, 7, 7, 3, 5, 8, 6, 0, 2, 7, 1, 7, 5, 9, 5, 5, 0, 0, 0, 7, 5, 4, 2, 1, 7, 6, 0, 8, 8, 8, 8, 0, 1, 4, 7, 1, 9, 3, 5, 6, 7, 0, 8, 2
OFFSET
0,2
COMMENTS
Also known as the 16th Bendersky constant.
LINKS
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(16) = exp((B(16)/4)*(zeta(17)/zeta(16))) = exp(-zeta'(-16)).
A(16) = exp(-16! * Zeta(17) / (2^17 * Pi^16)). - Vaclav Kotesovec, Jan 01 2016
EXAMPLE
0.16981839784277560774730955168312711879515291428637735860...
MATHEMATICA
Exp[N[(BernoulliB[16]/4)*(Zeta[17]/Zeta[16]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved
Decimal expansion of zeta(19).
+10
14
1, 0, 0, 0, 0, 0, 1, 9, 0, 8, 2, 1, 2, 7, 1, 6, 5, 5, 3, 9, 3, 8, 9, 2, 5, 6, 5, 6, 9, 5, 7, 7, 9, 5, 1, 0, 1, 3, 5, 3, 2, 5, 8, 5, 7, 1, 1, 4, 4, 8, 3, 8, 6, 3, 0, 2, 3, 5, 9, 3, 3, 0, 4, 6, 7, 6, 1, 8, 2, 3, 9, 4, 9, 7, 0, 5, 3, 4, 1, 3, 0, 9, 3, 1, 2, 6, 6, 4, 2, 2, 7, 1, 1, 8, 0, 7, 6, 3, 0
OFFSET
1,8
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
zeta(19) = Sum_{n >= 1} (A010052(n)/n^(19/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(19/2) ). - Mikael Aaltonen, Feb 23 2015
zeta(19) = Product_{k>=1} 1/(1 - 1/prime(k)^19). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0000019082127165539389256569577951013532585711448386302359330467618239...
MATHEMATICA
RealDigits[Zeta[19], 10, 75][[1]] (* Vincenzo Librandi, Feb 24 2015 *)
CROSSREFS
KEYWORD
cons,nonn
STATUS
approved
17th powers: a(n) = n^17.
+10
8
0, 1, 131072, 129140163, 17179869184, 762939453125, 16926659444736, 232630513987207, 2251799813685248, 16677181699666569, 100000000000000000, 505447028499293771, 2218611106740436992, 8650415919381337933
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
FORMULA
Totally multiplicative sequence with a(p) = p^17 for prime p. Multiplicative sequence with a(p^e) = p^(17e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-17).
Sum_{n>=1} 1/a(n) = zeta(17) = A013675. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 65535*zeta(17)/65536. - Amiram Eldar, Oct 09 2020
MATHEMATICA
Range[0, 15]^17 (* Harvey P. Dale, Sep 14 2011 *)
PROG
(Magma) [n^17: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
(PARI) for(n=0, 15, print1(n^17, ", ")) \\ Derek Orr, Feb 27 2017
CROSSREFS
Cf. A013675.
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved
a(n) = sigma_16(n), the sum of the 16th powers of the divisors of n.
+10
5
1, 65537, 43046722, 4295032833, 152587890626, 2821153019714, 33232930569602, 281479271743489, 1853020231898563, 10000152587956162, 45949729863572162, 184887084343023426, 665416609183179842, 2177986570740006274, 6568408508343827972, 18447025552981295105
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^16*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-16)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(16*e+16)-1)/(p^16-1).
Sum_{k=1..n} a(k) = zeta(17) * n^17 / 17 + O(n^18). (End)
MATHEMATICA
DivisorSigma[16, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
PROG
(Sage) [sigma(n, 16)for n in range(1, 14)] # Zerinvary Lajos, Jun 04 2009
(Magma) [DivisorSigma(16, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
(PARI) my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^16*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
(PARI) a(n) = sigma(n, 16); \\ Amiram Eldar, Oct 29 2023
KEYWORD
nonn,mult,easy
STATUS
approved
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 18.
+10
5
1, 131071, 64570081, 8589869056, 190734863281, 8463265086751, 38771752331201, 562945658454016, 2779530261754401, 24999809265103951, 50544702849929377, 554648540725313536, 720867993281778161, 5081852349802846271
OFFSET
1,2
COMMENTS
a(n) is the number of lattices L in Z^17 such that the quotient group Z^17 / L is C_n. - Álvar Ibeas, Nov 26 2015
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
FORMULA
a(n) = J_17(n)/A000010(n), where J_17 is the 17th Jordan totient function.
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(16e-16) * (p^17-1) / (p-1).
For squarefree n, a(n) = A000203(n^16). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^17, where c = (1/17) * Product_{p prime} (1 + (p^16-1)/((p-1)*p^17)) = 0.1143286202... .
Sum_{k>=1} 1/a(k) = zeta(16)*zeta(17) * Product_{p prime} (1 - 2/p^17 + 1/p^33) = 1.000007645061593... . (End)
MAPLE
A161213 := proc(n)
add(numtheory[mobius](n/d)*d^17, d=numtheory[divisors](n)) ;
%/numtheory[phi](n) ;
end proc:
for n from 1 to 5000 do
printf("%d %d\n", n, A161213(n)) ;
end do: # R. J. Mathar, Mar 15 2016
MATHEMATICA
A161213[n_]:=DivisorSum[n, MoebiusMu[n/#]*#^(18-1)/EulerPhi[n]&]; Array[A161213, 20]
f[p_, e_] := p^(16*e - 16) * (p^17-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
PROG
(PARI) A161213(n)=sumdiv(n, d, moebius(n/d)*d^17)/eulerphi(n);
(PARI) vector(100, n, sumdiv(n^16, d, if(ispower(d, 17), moebius(sqrtnint(d, 16))*sigma(n^16/d), 0))) \\ Altug Alkan, Nov 26 2015
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^17 - 1)*f[i, 1]^(16*f[i, 2] - 16)/(f[i, 1] - 1)); } \\ Amiram Eldar, Nov 08 2022
CROSSREFS
Column 17 of A263950.
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Nov 19 2009
EXTENSIONS
Definition corrected by Enrique Pérez Herrero, Oct 30 2010
STATUS
approved

Search completed in 0.014 seconds