login
Search: a004942 -id:a004942
     Sort: relevance | references | number | modified | created      Format: long | short | data
Multiples of 29.
+10
8
0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435, 464, 493, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 870, 899, 928, 957, 986, 1015, 1044, 1073, 1102, 1131, 1160, 1189, 1218, 1247, 1276, 1305, 1334
OFFSET
0,2
COMMENTS
Length of hypotenuses on the main diagonal of the Pythagorean spiral whose edges have length A195033 and whose vertices are the numbers A195034, if n >= 1.
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
a(n) = 29*n.
From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: 29*x/(x-1)^2.
E.g.f.: 29*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
MATHEMATICA
29Range[0, 50] (* Harvey P. Dale, Oct 25 2011 *)
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Oct 12 2011
STATUS
approved
a(n) = round(n*phi^4), where phi is the golden ratio, A001622.
+10
6
0, 7, 14, 21, 27, 34, 41, 48, 55, 62, 69, 75, 82, 89, 96, 103, 110, 117, 123, 130, 137, 144, 151, 158, 164, 171, 178, 185, 192, 199, 206, 212, 219, 226, 233, 240, 247, 254, 260, 267, 274, 281, 288, 295, 302, 308
OFFSET
0,2
MATHEMATICA
Round[Range[0, 100]GoldenRatio^4] (* Paolo Xausa, Oct 28 2023 *)
PROG
(Magma) [Round(n*(7+3*Sqrt(5))/2): n in [0..80]]; // G. C. Greubel, Dec 04 2023
(SageMath) [round(golden_ratio^4*n) for n in range(81)] # G. C. Greubel, Dec 04 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved
a(n) = round(n*phi^5), where phi is the golden ratio, A001622.
+10
5
0, 11, 22, 33, 44, 55, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 189, 200, 211, 222, 233, 244, 255, 266, 277, 288, 299, 311, 322, 333, 344, 355, 366, 377, 388, 399, 410, 421, 433, 444, 455, 466, 477
OFFSET
0,2
LINKS
MATHEMATICA
With[{c=GoldenRatio^5}, Round[c*Range[0, 50]]] (* Harvey P. Dale, Nov 28 2021 *)
PROG
(Magma) [Round(n*(11+5*Sqrt(5))/2): n in [0..80]]; // G. C. Greubel, Dec 04 2023
(SageMath) [round(golden_ratio^5*n) for n in range(81)] # G. C. Greubel, Dec 04 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved
a(n) = round(n*phi^6), where phi is the golden ratio, A001622.
+10
5
0, 18, 36, 54, 72, 90, 108, 126, 144, 161, 179, 197, 215, 233, 251, 269, 287, 305, 323, 341, 359, 377, 395, 413, 431, 449, 467, 484, 502, 520, 538, 556, 574, 592, 610, 628, 646, 664, 682, 700, 718, 736, 754, 772
OFFSET
0,2
LINKS
MATHEMATICA
Round[Range[0, 50]GoldenRatio^6] (* Harvey P. Dale, Jul 21 2020 *)
PROG
(Magma) [Round(n*(9+4*Sqrt(5))): n in [0..80]]; // G. C. Greubel, Jan 23 2024
(SageMath) [round(golden_ratio^6*n) for n in range(81)] # G. C. Greubel, Jan 23 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved
a(n) = round(n*phi^8), where phi is the golden ratio, A001622.
+10
5
0, 47, 94, 141, 188, 235, 282, 329, 376, 423, 470, 517, 564, 611, 658, 705, 752, 799, 846, 893, 940, 987, 1034, 1081, 1127, 1174, 1221, 1268, 1315, 1362, 1409, 1456, 1503, 1550, 1597, 1644, 1691, 1738, 1785
OFFSET
0,2
COMMENTS
a(n+48) - a(n+47) - a(n+1) + a(n) = 0 for 0 <= n <= 1055, but not for n = 1056. - Robert Israel, Oct 18 2023
LINKS
MAPLE
p8:= simplify(((1+sqrt(5))/2)^8);
seq(round(n*p8), n=0..100); # Robert Israel, Oct 18 2023
MATHEMATICA
Round[GoldenRatio^8 Range[0, 40]] (* Harvey P. Dale, Sep 18 2023 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved
a(n) = 29*n + floor( n/29 ) + 0^( 1-floor( (14+(n mod 29))/29 ) ).
+10
3
0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1278, 1307, 1336
OFFSET
0,2
COMMENTS
This is an approximation to A004942 (Nearest integer to n*phi^7, where phi is the golden ratio, A001622).
LINKS
Eric Weisstein's World of Mathematics, Golden Ratio
Wikipedia, Golden ratio
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
EXAMPLE
n= 0, 29*n+floor(0.0) +0^(1-floor(0.48))= 0 +0 +0 = 0 (n/29=0,0^1=0).
n=14, 29*n+floor(0.48)+0^(1-floor(0.97))= 406 +0 +0 = 406 (0^1=0).
n=15, 29*n+floor(0.52)+0^(1-floor(1.0)) = 435 +0 +1 = 436 (0^0=1).
n=28, 29*n+floor(0.97)+0^(1-floor(1.45))= 812 +0 +1 = 813 (0^0=1).
n=29, 29*n+floor(1.0) +0^(1-floor(0.48))= 841 +1 +0 = 842 (n/29*1,0^1=0).
n=43, 29*n+floor(1.48)+0^(1-floor(0.97))= 1247 +1 +0 = 1248 (0^1=0).
n=44, 29*n+floor(1.52)+0^(1-floor(1.0)) = 1276 +1 +1 = 1278 (0^0=1).
n=58, 29*n+floor(2.0) +0^(1-floor(0.48))= 1682 +2 +0 = 1684 (n/29*2,0^1=0).
n=85, 29*n+floor(2.93)+0^(1-floor(1.41))= 2465 +2 +1 = 2468 (0^0=1).
n=86, 29*n+floor(2.97)+0^(1-floor(1.45))= 2494 +2 +1 = 2497 (0^0=1).
n=87, 29*n+floor(3.0) +0^(1-floor(0.48))= 2523 +3 +0 = 2526 (n/29*3,0^0=0).
PROG
(Python)
for n in range(101):
print(29*n+n//29+0**(1-(14+n%29)//29), end=', ')
(Python)
def A249079(n):
a, b = divmod(n, 29)
return 29*n+a+int(b>=15) # Chai Wah Wu, Jul 27 2022
(PARI) a(n) = 29*n + n\29 + 0^(1 - (14+(n % 29))\29); \\ Michel Marcus, Oct 25 2014
(Magma) [29*n + Floor(n/29) + 0^(1-Floor((14+(n mod 29))/29)) : n in [0..50]]; // Vincenzo Librandi, Nov 05 2014
CROSSREFS
Cf. A001622 (phi), A195819 (29*n).
Cf. A004942 (round(n*phi^7)), A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)).
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Oct 20 2014
STATUS
approved
a(n) = 29*n + ceiling(n/29).
+10
2
0, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 872, 901, 930, 959, 988, 1017, 1046, 1075, 1104, 1133, 1162, 1191, 1220, 1249, 1278, 1307, 1336, 1365, 1394, 1423
OFFSET
0,2
COMMENTS
This is an approximation to A004962 (ceiling of n*phi^7, where phi is the golden ratio, A001622).
LINKS
Eric Weisstein's World of Mathematics, Golden Ratio
Wikipedia, Golden ratio
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
FORMULA
a(n) = 29*n + ceiling(n/29).
a(n) = A004962(n) for n < 871. - Joerg Arndt, Oct 18 2014
EXAMPLE
For n = 10, 29n + ceiling(n/29) = 290 + ceiling(0.3) = 290 + 1 = 291.
MAPLE
A248739:=n->29*n+ceil(n/29): seq(A248739(n), n=0..50); # Wesley Ivan Hurt, Oct 14 2014
MATHEMATICA
Table[29 n + Ceiling[n/29], {n, 0, 60}] (* Vincenzo Librandi, Oct 13 2014 *)
PROG
(Python)
from math import *
for n in range(0, 101):
..print n, (29*n+ceil(n/29.0))
(Magma) [29*n + Ceiling(n/29): n in [0..60]]; // Vincenzo Librandi, Oct 13 2014
CROSSREFS
Cf. A001622 (phi), A195819 (29*n).
Cf. A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)), A004942 (round(n*phi^7)).
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Oct 13 2014
STATUS
approved
a(n) = 29*n + floor(n/29) + 0^n - 0^(n mod 29).
+10
2
0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435, 464, 493, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248
OFFSET
0,2
COMMENTS
This is an approximation to A004922 (floor of n*phi^7, where phi is the golden ratio, A001622).
The "+ 0^n - 0^(n mod 29)" corrects a(n), for n=0 and multiples of 29. (See examples below.)
LINKS
Eric Weisstein's World of Mathematics, Golden Ratio
Wikipedia, Golden ratio
EXAMPLE
For n = 0, 29*n + floor(0.0) + 0^0 - 0^(0) = 0 + 0 + 1 - 1 = 0 (n=29*0).
For n = 28, 29*n + floor(0.97) + 0^28 - 0^(28)= 812 + 0 + 0 - 0 = 812.
For n = 29, 29*n + floor(1.0) + 0^29 - 0^(0) = 841 + 1 + 0 - 1 = 841 (n=29*1).
For n = 31, 29*n + floor(1.1) + 0^31 - 0^(2) = 899 + 1 + 0 - 0 = 900.
For n = 87, 29*n + floor(3.0) + 0^87 - 0^(0) = 2523 + 3 + 0 - 1 = 2525 (n=29*3).
PROG
(Python)
from math import *
from decimal import *
getcontext().prec = 100
for n in range(0, 101):
..print n, (29*n+floor(n/29.0))+ 0**n-0**(n%29)
(Python)
def A248786(n):
a, b = divmod(n, 29)
return 29*n+a-int(not b) if n else 0 # Chai Wah Wu, Jul 27 2022
(Magma) [(29*n+Floor(n/29))+ 0^n-0^(n mod 29): n in [0..60]]; // Vincenzo Librandi, Oct 14 2014
(PARI) a(n) = 29*n+ n\29 + 0^n - 0^(n % 29); \\ Michel Marcus, Oct 14 2014
CROSSREFS
Cf. A001622 (phi), A195819 (29*n).
Cf. A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)), A004942 (round(n*phi^7)).
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Oct 14 2014
STATUS
approved
a(0)=1, a(1)=2, a(n) = 31*a(n-1) - 29*a(n-2).
+10
1
1, 2, 33, 965, 28958, 869713, 26121321, 784539274, 23563199185, 707707535789, 21255600833094, 638400107288033, 19173990901769297, 575880114843495250, 17296237823997043137, 519482849213446974997, 15602377428720941973934, 468608697663159238917041
OFFSET
0,2
COMMENTS
The sequence A084330 is a(0)=0, a(1)=1, a(n)=31a(n-1)-29a(n-2), and the ratio A084330(n+1)/a(n) converges to phi^7 (~29.034441853748633...), where phi is the golden ratio (A001622).
The continued fraction for phi^7 is {29,{29}}, and 29 occurs in the following approximations for n*phi^7: A248786 (29*n+floor(n/29)+0^n-0^(n mod 29)) for A004922 (floor(n*phi^7)), A249079 (29*n+floor(n/29)+0^(1-floor((14+(n mod 29))/29)) for A004942 (round(n*phi^7)), and A248739 (29*n+ceiling(n/29)) for A004962 (ceiling(n*phi^7)).
LINKS
Eric W. Weisstein, From MathWorld--A Wolfram Web Resource, Golden Ratio
Eric W. Weisstein, From MathWorld--A Wolfram Web Resource, Golden Ratio Conjugate
FORMULA
G.f.: (1-29*x)/(29*x^2-31*x+1). - Vincenzo Librandi, Jun 03 2015
EXAMPLE
For n=3, 31*a(2)-29*a(1) = 31*(33)-29*(2) = 1023-58 = 965.
MAPLE
a:= n-> (<<0|1>, <-29|31>>^n. <<1, 2>>)[1, 1]:
seq(a(n), n=0..23); # Alois P. Heinz, Dec 22 2023
MATHEMATICA
LinearRecurrence[{31, -29}, {1, 2}, 50] (* or *) CoefficientList[Series[(1 - 29 x)/(29 x^2 - 31 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 03 2015 *)
PROG
(Python)
print(1, end=', ')
print(2, end=', ')
an = [1, 2]
for n in range(2, 26):
print(31*an[n-1]-29*an[n-2], end=', ')
an.append(31*an[n-1]-29*an[n-2])
(Magma) I:=[1, 2]; [n le 2 select I[n] else 31*Self(n-1)-29*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 03 2015
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Jun 02 2015
STATUS
approved

Search completed in 0.009 seconds