# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a048788 Showing 1-1 of 1 %I A048788 #128 Nov 20 2023 00:04:56 %S A048788 0,1,2,3,8,11,30,41,112,153,418,571,1560,2131,5822,7953,21728,29681, %T A048788 81090,110771,302632,413403,1129438,1542841,4215120,5757961,15731042, %U A048788 21489003,58709048,80198051,219105150,299303201,817711552,1117014753 %N A048788 a(2n+1) = a(2n) + a(2n-1), a(2n) = 2*a(2n-1) + a(2n-2); a(n) = n for n = 0, 1. %C A048788 Numerators of continued fraction convergents to sqrt(3) - 1 (A160390). See A002530 for denominators. - _N. J. A. Sloane_, Dec 17 2007 %C A048788 Convergents are 1, 2/3, 3/4, 8/11, 11/15, 30/41, 41/56, 112/153, ... - _Clark Kimberling_, Sep 21 2013 %C A048788 A strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. - _Peter Bala_, Jun 06 2014 %C A048788 From _Sarah-Marie Belcastro_, Feb 15 2022: (Start) %C A048788 a(n) is also the number of perfect matchings of an edge-labeled 2 X (n-1) Mobius band grid graph, or equivalently the number of domino tilings of a 2 X (n-1) Mobius band grid. (The twist is on the length-n side.) %C A048788 a(n) is also the output of Lu and Wu's formula for the number of perfect matchings of an m X n Mobius band grid, specialized to m = 2 with the twist on the length-n side. %C A048788 2*a(n) is the number of perfect matchings of an edge-labeled 2 X (n-1) projective planar grid graph, or equivalently the number of domino tilings of a 2 X (n-1) projective planar grid. (End) %D A048788 Russell Lyons, A bird's-eye view of uniform spanning trees and forests, in Microsurveys in Discrete Probability, AMS, 1998. %H A048788 Vincenzo Librandi, Table of n, a(n) for n = 0..1000 %H A048788 Peter Bala, Notes on 2-periodic continued fractions and Lehmer sequences %H A048788 Sarah-Marie Belcastro, Domino Tilings of 2 X n Grids (or Perfect Matchings of Grid Graphs) on Surfaces, J. Integer Seq. 26 (2023), Article 23.5.6. %H A048788 Marcia Edson, Scott Lewis and Omer Yayenie, The k-periodic Fibonacci sequence and an extended Binet's formula, INTEGERS 11 (2011) #A32. %H A048788 W. T. Lu and F. Y. Wu, Close-packed dimers on nonorientable surfaces, Physics Letters A, 293 (2002), 235-246. %H A048788 D. Panario, M. Sahin, and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78. %H A048788 J. L. Ramirez and F. Sirvent, A q-Analogue of the Bi-Periodic Fibonacci Sequence, J. Int. Seq. 19 (2016) # 16.4.6, t_n at a=2, b=1. %H A048788 Index to divisibility sequences %H A048788 Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1). %F A048788 G.f.: x*(1+2*x-x^2)/(1-4*x^2+x^4). - _Paul Barry_, Sep 18 2009 %F A048788 a(n) = 4*a(n-2) - a(n-4). - _Vincenzo Librandi_, Dec 10 2013 %F A048788 a(2*n-1) = A001835(n); a(2*n) = 2*A001353(n). - _Peter Bala_, Jun 06 2014 %F A048788 From _Gerry Martens_, Jul 11 2015: (Start) %F A048788 Interspersion of 2 sequences [a1(n-1),a0(n)] for n>0: %F A048788 a0(n) = ((3+sqrt(3))*(2-sqrt(3))^n-((-3+sqrt(3))*(2+sqrt(3))^n))/6. %F A048788 a1(n) = 2*Sum_{i=1..n} a0(i). (End) %F A048788 a(n) = ((r + (-1)^n/r)*s^n/2^(n/2) - (1/r + (-1)^n*r)*2^(n/2)/s^n)*sqrt(6)/12, where r = 1 + sqrt(2), s = 1 + sqrt(3). - _Vladimir Reshetnikov_, May 11 2016 %F A048788 a(n) = 2*ChebyshevU(n-1, 2) if n is even and ChebyshevU(n, 2) - ChebyshevU(n-1, 2) if n in odd. - _G. C. Greubel_, Dec 23 2019 %F A048788 a(n) = -(-1)^n*a(-n) for all n in Z. - _Michael Somos_, Sep 17 2020 %p A048788 seq( simplify( `if`(`mod`(n,2)=0, 2*ChebyshevU((n-2)/2, 2), ChebyshevU((n-1)/2, 2) - ChebyshevU((n-3)/2, 2)) ), n=0..40); # _G. C. Greubel_, Dec 23 2019 %t A048788 Numerator[NestList[(2/(2 + #))&, 0, 40]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2010 *) %t A048788 CoefficientList[Series[x(1+2x-x^2)/(1-4x^2+x^4), {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 10 2013 *) %t A048788 a0[n_]:= ((3+Sqrt[3])*(2-Sqrt[3])^n-((-3+Sqrt[3])*(2+Sqrt[3])^n))/6 // Simplify %t A048788 a1[n_]:= 2*Sum[a0[i], {i, 1, n}] %t A048788 Flatten[MapIndexed[{a1[#-1],a0[#]}&,Range[20]]] (* _Gerry Martens_, Jul 10 2015 *) %t A048788 Round@Table[With[{r=1+Sqrt[2], s=1+Sqrt[3]}, ((r + (-1)^n/r) s^n/2^(n/2) - (1/r + (-1)^n r) 2^(n/2)/s^n) Sqrt[6]/12], {n, 0, 20}] (* or *) LinearRecurrence[ {0,4,0,-1}, {0,1,2,3}, 40] (* _Vladimir Reshetnikov_, May 11 2016 *) %t A048788 Table[If[EvenQ[n], 2*ChebyshevU[(n-2)/2, 2], ChebyshevU[(n-1)/2, 2] - ChebyshevU[(n-3)/2, 2]], {n, 0, 40}] (* _G. C. Greubel_, Dec 23 2019 *) %o A048788 (Magma) I:=[0,1,2,3]; [n le 4 select I[n] else 4*Self(n-2)-Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Dec 10 2013 %o A048788 (PARI) main(size)=v=vector(size); v[1]=0;v[2]=1;v[3]=2;v[4]=3;for(i=5, size, v[i]=4*v[i-2] - v[i-4]); v; \\ _Anders Hellström_, Jul 11 2015 %o A048788 (PARI) a=vector(50); a[1]=1; a[2]=2; for(n=3, #a, if(n%2==1, a[n]=a[n-1]+a[n-2], a[n]=2*a[n-1]+a[n-2])); concat(0, a) \\ _Colin Barker_, Jan 30 2016 %o A048788 (PARI) a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,4,0]^n*[0;1;2;3])[1,1] \\ _Charles R Greathouse IV_, Mar 16 2017 %o A048788 (PARI) apply( {A048788(n)=imag((2+quadgen(12))^(n\/2)*if(bittest(n, 0), quadgen(12)-1, 2))}, [0..30]) \\ _M. F. Hasler_, Nov 04 2019 %o A048788 (PARI) {a(n) = my(s=1,m=n); if(n<0,s=-(-1)^n; m=-n); polcoeff(x*(1+2*x-x^2)/(1-4*x^2+x^4) + x*O(x^m), m)*s}; /* _Michael Somos_, Sep 17 2020 */ %o A048788 (Sage) %o A048788 @CachedFunction %o A048788 def a(n): %o A048788 if (mod(n,2)==0): return 2*chebyshev_U((n-2)/2, 2) %o A048788 else: return chebyshev_U((n-1)/2, 2) - chebyshev_U((n-3)/2, 2) %o A048788 [a(n) for n in (0..40)] # _G. C. Greubel_, Dec 23 2019 %o A048788 (GAP) a:=[0,1,2,3];; for n in [5..40] do a[n]:=4a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Dec 23 2019 %Y A048788 Cf. A002530, A002531. %Y A048788 Bisections are A001835 and A052530. %K A048788 nonn,easy,frac %O A048788 0,3 %A A048788 Robin Trew (trew(AT)hcs.harvard.edu), Dec 11 1999 %E A048788 Denominator of g.f. corrected by _Paul Barry_, Sep 18 2009 %E A048788 Incorrect g.f. deleted by _Colin Barker_, Aug 10 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE