# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a005314 Showing 1-1 of 1 %I A005314 M0709 #189 Jun 27 2024 07:42:06 %S A005314 0,1,2,3,5,9,16,28,49,86,151,265,465,816,1432,2513,4410,7739,13581, %T A005314 23833,41824,73396,128801,226030,396655,696081,1221537,2143648, %U A005314 3761840,6601569,11584946,20330163,35676949,62608681,109870576,192809420,338356945,593775046 %N A005314 For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3). %C A005314 Number of compositions of n into parts congruent to {1,2} mod 4. - _Vladeta Jovovic_, Mar 10 2005 %C A005314 a(n)/a(n-1) tends to A109134; an eigenvalue of the matrix M and a root to the characteristic polynomial. - _Gary W. Adamson_, May 25 2007 %C A005314 Starting with offset 1 = INVERT transform of (1, 1, 0, 0, 1, 1, 0, 0, ...). - _Gary W. Adamson_, May 04 2009 %C A005314 a(n-2) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 0; 0, 1, 1; 1, 0, 1] or of the 3 X 3 matrix [0, 0, 1; 1, 1, 0; 0, 1, 1]. - _R. J. Mathar_, Feb 03 2014 %C A005314 Counts closed walks of length (n+2) at a vertex of a unidirectional triangle containing a loop on remaining two vertices. - _David Neil McGrath_, Sep 15 2014 %C A005314 Also the number of binary words of length n that begin with 1 and avoid the subword 101. a(5) = 9: 10000, 10001, 10010, 10011, 11000, 11001, 11100, 11110, 11111. - _Alois P. Heinz_, Jul 21 2016 %C A005314 Also the number of binary words of length n-1 such that every two consecutive 0s are immediately followed by at least two consecutive 1s. a(4) = 5: 010, 011, 101, 110, 111. - _Jerrold Grossman_, May 03 2024 %D A005314 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005314 T. D. Noe, Table of n, a(n) for n = 0..400 %H A005314 Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Tanya Khovanova, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, and Andrew Zhao, From Unequal Chance to a Coin Game Dance: Variants of Penney's Game, arXiv:2006.13002 [math.HO], 2020. %H A005314 Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Permutations avoiding a simsun pattern, The Electronic Journal of Combinatorics (2020) Vol. 27, Issue 3, P3.45. %H A005314 P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003. %H A005314 Christian Ennis, William Holland, Omer Mujawar, Aadit Narayanan, Frank Neubrander, Marie Neubrander, and Christina Simino, Words in Random Binary Sequences I, arXiv:2107.01029 [math.GM], 2021. %H A005314 R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137. %H A005314 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 426 %H A005314 L. A. Medina and A. Straub, On multiple and infinite log-concavity, 2013, preprint Annals of Combinatorics, March 2016, Volume 20, Issue 1, pp 125-138. %H A005314 Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3. %H A005314 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A005314 Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 %H A005314 Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3. %H A005314 Index entries for linear recurrences with constant coefficients, signature (2,-1,1). %F A005314 From _Paul D. Hanna_, Oct 22 2004: (Start) %F A005314 G.f.: x/(1-2*x+x^2-x^3). %F A005314 a(n) = Sum_{k=0..[(2n-1)/3]} binomial(n-1-[k/2], k), where [x]=floor(x). (End) %F A005314 a(n) = Sum_{k=0..n} binomial(n-k, 2*k+1). %F A005314 23*a_n = 3*P_{2n+2} + 7*P_{2n+1} - 2*P_{2n}, where P_n are the Perrin numbers, A001608. - _Don Knuth_, Dec 09 2008 %F A005314 G.f. (1-z)*(1+z^2)/(1-2*z+z^2-z^3) for the augmented version 1, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, ... was given in _Simon Plouffe_'s thesis of 1992. %F A005314 a(n) = a(n-1) + a(n-2) + a(n-4) = a(n-2) + A049853(n-1) = a(n-1) + A005251(n) = Sum_{i <= n} A005251(i). %F A005314 a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-k, 2*k+1). - _Richard L. Ollerton_, May 12 2004 %F A005314 M^n*[1,0,0] = [a(n-2), a(n-1), a]; where M = the 3 X 3 matrix [0,1,0; 0,0,1; 1,-1,2]. Example M^5*[1,0,0] = [3,5,9]. - _Gary W. Adamson_, May 25 2007 %F A005314 a(n) = A000931(2*n + 4). - _Michael Somos_, Sep 18 2012 %F A005314 a(n) = A077954(-n - 2). - _Michael Somos_, Sep 18 2012 %F A005314 G.f.: 1/( 1 - Sum_{k>=0} x*(x-x^2+x^3)^k ) - 1. - _Joerg Arndt_, Sep 30 2012 %F A005314 a(n) = Sum_{k=0..n} binomial( n-floor((k+1)/2), n-floor((3k-1)/2) ). - _John Molokach_, Jul 21 2013 %F A005314 a(n) = Sum_{k=1..floor((2n+2)/3)} (binomial(n - floor((4*n+15-6*k+(-1)^k)/12), n - floor((4*n+15-6*k+(-1)^k)/12) - floor((2*n-1)/3) + k - 1). - _John Molokach_, Jul 24 2013 %F A005314 a(n) = round(A001608(2n+1)*r) where r is the real root of 23*x^3 - 23*x^2 + 8*x - 1 = 0, r = 0.4114955... - _Richard Turk_, Oct 24 2019 %F A005314 a(n+2) = n + 2 + Sum_{k=0..n} (n-k)*a(k). - _Greg Dresden_ and _Yichen P. Wang_, Sep 16 2021 %F A005314 a(n) ~ (19 - r + 11*r^2) / (23 * r^(n-1)), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - _Vaclav Kotesovec_, Apr 14 2024 %F A005314 a(n) = n*3F2(1/3-n/3,2/3-n/3,1-n/3;-n,3/2;27/4). - _R. J. Mathar_, Jun 27 2024 %e A005314 G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 28*x^7 + 49*x^8 + ... %e A005314 From _Gus Wiseman_, Nov 25 2019: (Start) %e A005314 a(n) is the number of subsets of {1..n} containing n such that if x and x + 2 are both in the subset, then so is x + 1. For example, the a(1) = 1 through a(5) = 9 subsets are: %e A005314 {1} {2} {3} {4} {5} %e A005314 {1,2} {2,3} {1,4} {1,5} %e A005314 {1,2,3} {3,4} {2,5} %e A005314 {2,3,4} {4,5} %e A005314 {1,2,3,4} {1,2,5} %e A005314 {1,4,5} %e A005314 {3,4,5} %e A005314 {2,3,4,5} %e A005314 {1,2,3,4,5} %e A005314 (End) %p A005314 A005314 := proc(n) %p A005314 option remember ; %p A005314 if n <=2 then %p A005314 n; %p A005314 else %p A005314 2*procname(n-1)-procname(n-2)+procname(n-3) ; %p A005314 end if; %p A005314 end proc: %p A005314 seq(A005314(n),n=0..20) ; # _R. J. Mathar_, Feb 25 2024 %t A005314 LinearRecurrence[{2, -1, 1}, {0, 1, 2}, 100] (* _Vladimir Joseph Stephan Orlovsky_, Jul 03 2011 *) %t A005314 Table[Sum[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, 0, n}], {n, 0, 100}] (* _John Molokach_, Jul 21 2013 *) %t A005314 Table[Sum[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {k, 1, Floor[(2 n + 2)/3]}], {n, 0, 100}] (* _John Molokach_, Jul 25 2013 *) %t A005314 a[ n_] := If[ n < 0, SeriesCoefficient[ x^2 / (1 - x + 2 x^2 - x^3), {x, 0, -n}], SeriesCoefficient[ x / (1 - 2 x + x^2 - x^3), {x, 0, n}]]; (* _Michael Somos_, Dec 13 2013 *) %t A005314 RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==2a[n-1]-a[n-2]+a[n-3]},a,{n,40}] (* _Harvey P. Dale_, May 13 2018 *) %t A005314 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MatchQ[#,{___,x_,y_,___}/;x+2==y]&]],{n,0,10}] (* _Gus Wiseman_, Nov 25 2019 *) %o A005314 (PARI) {a(n) = sum(k=0, (2*n-1)\3, binomial(n-1-k\2, k))} %o A005314 (Haskell) %o A005314 a005314 n = a005314_list !! n %o A005314 a005314_list = 0 : 1 : 2 : zipWith (+) a005314_list %o A005314 (tail $ zipWith (-) (map (2 *) $ tail a005314_list) a005314_list) %o A005314 -- _Reinhard Zumkeller_, Oct 14 2011 %o A005314 (PARI) {a(n) = if( n<0, polcoeff( x^2 / (1 - x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^2 - x^3) + x * O(x^n), n))}; /* _Michael Somos_, Sep 18 2012 */ %o A005314 (Magma) [0] cat [n le 3 select n else 2*Self(n-1) - Self(n-2) + Self(n-3):n in [1..35]]; // _Marius A. Burtea_, Oct 24 2019 %o A005314 (Magma) R:=PowerSeriesRing(Integers(), 36); [0] cat Coefficients(R!( x/(1-2*x+x^2-x^3))); // _Marius A. Burtea_, Oct 24 2019 %o A005314 (SageMath) %o A005314 def A005314(n): return sum( binomial(n-k, 2*k+1) for k in range(floor((n+2)/3)) ) %o A005314 [A005314(n) for n in range(51)] # _G. C. Greubel_, Nov 10 2023 %Y A005314 Equals row sums of triangle A099557. %Y A005314 Equals row sums of triangle A224838. %Y A005314 Cf. A011973 (starting with offset 1 = Falling diagonal sums of triangle with rows displayed as centered text). %Y A005314 First differences of A005251, shifted twice to the left. %Y A005314 Cf. A003242, A114901, A261041, A274174. %K A005314 nonn,easy %O A005314 0,3 %A A005314 _N. J. A. Sloane_ %E A005314 More terms and additional formulas from _Henry Bottomley_, Jul 21 2000 %E A005314 Plouffe's g.f. edited by _R. J. Mathar_, May 12 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE