# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a005044 Showing 1-1 of 1 %I A005044 M0146 #216 Nov 09 2022 19:31:15 %S A005044 0,0,0,1,0,1,1,2,1,3,2,4,3,5,4,7,5,8,7,10,8,12,10,14,12,16,14,19,16, %T A005044 21,19,24,21,27,24,30,27,33,30,37,33,40,37,44,40,48,44,52,48,56,52,61, %U A005044 56,65,61,70,65,75,70,80,75,85,80,91,85,96,91,102,96,108,102,114,108,120 %N A005044 Alcuin's sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)). %C A005044 a(n) is the number of triangles with integer sides and perimeter n. %C A005044 Also a(n) is the number of triangles with distinct integer sides and perimeter n+6, i.e., number of triples (a, b, c) such that 1 < a < b < c < a+b, a+b+c = n+6. - _Roger Cuculière_ %C A005044 With a different offset (i.e., without the three leading zeros, as in A266755), the number of ways in which n empty casks, n casks half-full of wine and n full casks can be distributed to 3 persons in such a way that each one gets the same number of casks and the same amount of wine [Alcuin]. E.g., for n=2 one can give 2 people one full and one empty and the 3rd gets two half-full. (Comment corrected by _Franklin T. Adams-Watters_, Oct 23 2006) %C A005044 For m >= 2, the sequence {a(n) mod m} is periodic with period 12*m. - Martin J. Erickson (erickson(AT)truman.edu), Jun 06 2008 %C A005044 Number of partitions of n into parts 2, 3, and 4, with at least one part 3. - _Joerg Arndt_, Feb 03 2013 %C A005044 For several values of p and q the sequence (A005044(n+p) - A005044(n-q)) leads to known sequences, see the crossrefs. - _Johannes W. Meijer_, Oct 12 2013 %C A005044 For n>=3, number of partitions of n-3 into parts 2, 3, and 4. - _David Neil McGrath_, Aug 30 2014 %C A005044 Also, a(n) is the number of partitions mu of n of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even (see below example). - _John M. Campbell_, Jan 29 2016 %C A005044 For n > 1, number of triangles with odd side lengths and perimeter 2*n-3. - _Wesley Ivan Hurt_, May 13 2019 %C A005044 Number of partitions of n+1 into 4 parts whose largest two parts are equal. - _Wesley Ivan Hurt_, Jan 06 2021 %C A005044 For n>=3, number of weak partitions of n-3 (that is, allowing parts of size 0) into three parts with no part exceeding (n-3)/2. Also, number of weak partitions of n-3 into three parts, all of the same parity as n-3. - _Kevin Long_, Feb 20 2021 %C A005044 Also, a(n) is the number of incongruent acute triangles formed from the vertices of a regular n-gon. - _Frank M Jackson_, Nov 04 2022 %D A005044 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7. %D A005044 I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. Wiley, NY, Chap.10, Section 10.2, Problems 5 and 6, pp. 451-2. %D A005044 D. Olivastro: Ancient Puzzles. Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam Books, 1993. See p. 158. %D A005044 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A005044 A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 8, #30 (First published: San Francisco: Holden-Day, Inc., 1964) %H A005044 Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe) %H A005044 Alcuin of York, Propositiones ad acuendos juvenes, [Latin with English translation] - see Problem 12. %H A005044 G. E. Andrews, A note on partitions and triangles with integer sides, Amer. Math. Monthly, 86 (1979), 477-478. %H A005044 G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338. %H A005044 G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-gon partitions, Bull. Austral Math. Soc., 64 (2001), 321-329. %H A005044 G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 19. %H A005044 Donald J. Bindner and Martin Erickson, Alcuin's Sequence, Amer. Math. Monthly, 119, February 2012, pp. 115-121. %H A005044 P. Bürgisser and C. Ikenmeyer, Fundamental invariants of orbit closures, arXiv preprint arXiv:1511.02927 [math.AG], 2015. See Section 5.5. %H A005044 James East and Ron Niles, Integer polygons of given perimeter, Bull. Aust. Math. Soc. 100 (2019), no. 1, 131-147. %H A005044 James East and Ron Niles, Integer Triangles of Given Perimeter: A New Approach via Group Theory., Amer. Math. Monthly 126 (2019), no. 8, 735-739. %H A005044 Wulf-Dieter Geyer, Lecture on history of medieval mathematics [broken link] %H A005044 M. D. Hirschhorn, Triangles With Integer Sides %H A005044 M. D. Hirschhorn, Triangles With Integer Sides, Revisited %H A005044 R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39. [Annotated scanned copy] %H A005044 T. Jenkyns and E. Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly, 107 (Aug. 2000), 634-639. %H A005044 J. H. Jordan, R. Walch and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly, 86 (1979), 686-689. %H A005044 Hermann Kremer, Posting to de.sci.mathematik (1), (2), and (3). [Dead links] %H A005044 Hermann Kremer, Posting to alt.math.recreational [Dead link] %H A005044 N. Krier and B. Manvel, Counting integer triangles, Math. Mag., 71 (1998), 291-295. %H A005044 Mathforum, Triangle Perimeters %H A005044 Augustine O. Munagi, Computation of q-partial fractions, INTEGERS: Electronic Journal Of Combinatorial Number Theory, 7 (2007), #A25. %H A005044 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A005044 Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 %H A005044 S. A. Shirali, Case Studies in Experimental Mathematics, 2013. %H A005044 David Singmaster, Triangles with Integer Sides and Sharing Barrels, College Math J, 21:4 (1990) 278-285. %H A005044 James Tanton, Young students approach integer triangles, FOCUS 22 no. 5 (2002), 4 - 6. %H A005044 James Tanton, Integer Triangles, Chapter 11 in “Mathematics Galore!” (MAA, 2012). %H A005044 Eric Weisstein's World of Mathematics, Alcuin's Sequence, Integer Triangle, and Triangle. %H A005044 Wikipedia, Propositiones ad acuendos juvenes. %H A005044 R. G. Wilson v, Letter to N. J. A. Sloane, date unknown. %H A005044 Index entries for two-way infinite sequences %H A005044 Index entries for Molien series %H A005044 Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1). %F A005044 a(n) = a(n-6) + A059169(n) = A070093(n) + A070101(n) + A024155(n). %F A005044 For odd indices we have a(2*n-3) = a(2*n). For even indices, a(2*n) = nearest integer to n^2/12 = A001399(n). %F A005044 For all n, a(n) = round(n^2/12) - floor(n/4)*floor((n+2)/4) = a(-3-n) = A069905(n) - A002265(n)*A002265(n+2). %F A005044 For n = 0..11 (mod 12), a(n) is respectively n^2/48, (n^2 + 6*n - 7)/48, (n^2 - 4)/48, (n^2 + 6*n + 21)/48, (n^2 - 16)/48, (n^2 + 6*n - 7)/48, (n^2 + 12)/48, (n^2 + 6*n + 5)/48, (n^2 - 16)/48, (n^2 + 6*n + 9)/48, (n^2 - 4)/48, (n^2 + 6*n + 5)/48. %F A005044 Euler transform of length 4 sequence [ 0, 1, 1, 1]. - _Michael Somos_, Sep 04 2006 %F A005044 a(-3 - n) = a(n). - _Michael Somos_, Sep 04 2006 %F A005044 a(n) = sum(ceiling((n-3)/3) <= i <= floor((n-3)/2), sum(ceiling((n-i-3)/2) <= j <= i, 1 ) ) for n >= 1. - _Srikanth K S_, Aug 02 2008 %F A005044 a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n >= 9. - _David Neil McGrath_, Aug 30 2014 %F A005044 a(n+3) = a(n) if n is odd; a(n+3) = a(n) + floor(n/4) + 1 if n is even. Sketch of proof: There is an obvious injective map from perimeter-n triangles to perimeter-(n+3) triangles defined by f(a,b,c) = (a+1,b+1,c+1). It is easy to show f is surjective for odd n, while for n=2k the image of f is only missing the triangles (a,k+2-a,k+1) for 1 <= a <= floor(k/2)+1. - _James East_, May 01 2016 %F A005044 a(n) = round(n^2/48) if n is even; a(n) = round((n+3)^2/48) if n is odd. - _James East_, May 01 2016 %F A005044 a(n) = (6*n^2 + 18*n - 9*(-1)^n*(2*n + 3) - 36*sin(Pi*n/2) - 36*cos(Pi*n/2) + 64*cos(2*Pi*n/3) - 1)/288. - _Ilya Gutkovskiy_, May 01 2016 %F A005044 a(n) = A325691(n-3) + A000035(n) for n>=3. The bijection between partition(n,[2,3,4]) and not-over-half partition(n,3,n/2) + partition(n,2,n/2) can be built by a Ferrers(part)[0+3,1,2] map. And the last partition(n,2,n/2) is unique [n/2,n/2] if n is even, it is given by A000035. - _Yuchun Ji_, Sep 24 2020 %F A005044 a(4n+3) = a(4n) + n+1, a(4n+4) = a(4n+1) = A000212(n+1), a(4n+5) = a(4n+2) + n+1, a(4n+6) = a(4n+3) = A007980(n). - _Yuchun Ji_, Oct 10 2020 %F A005044 a(n)-a(n-4) = A008615(n-1). - _R. J. Mathar_, Jun 23 2021 %F A005044 a(n)-a(n-2) = A008679(n-3). - _R. J. Mathar_, Jun 23 2021 %e A005044 There are 4 triangles of perimeter 11, with sides 1,5,5; 2,4,5; 3,3,5; 3,4,4. So a(11) = 4. %e A005044 G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + 4*x^11 + 3*x^12 + ... %e A005044 From _John M. Campbell_, Jan 29 2016: (Start) %e A005044 Letting n = 15, there are a(n)=7 partitions mu |- 15 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even: %e A005044 (13,1,1) |- 15 %e A005044 (11,3,1) |- 15 %e A005044 (9,5,1) |- 15 %e A005044 (9,3,3) |- 15 %e A005044 (7,7,1) |- 15 %e A005044 (7,5,3) |- 15 %e A005044 (5,5,5) |- 15 %e A005044 (End) %p A005044 A005044 := n-> floor((1/48)*(n^2+3*n+21+(-1)^(n-1)*3*n)): seq(A005044(n), n=0..73); %p A005044 A005044 := -1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # _Simon Plouffe_ in his 1992 dissertation %t A005044 a[n_] := Round[If[EvenQ[n], n^2, (n + 3)^2]/48] (* Peter Bertok, Jan 09 2002 *) %t A005044 CoefficientList[Series[x^3/((1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 105}], x] (* _Robert G. Wilson v_, Jun 02 2004 *) %t A005044 me[n_] := Module[{i, j, sum = 0}, For[i = Ceiling[(n - 3)/3], i <= Floor[(n - 3)/2], i = i + 1, For[j = Ceiling[(n - i - 3)/2], j <= i, j = j + 1, sum = sum + 1] ]; Return[sum]; ] mine = Table[me[n], {n, 1, 11}]; (* Srikanth (sriperso(AT)gmail.com), Aug 02 2008 *) %t A005044 LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1},{0,0,0,1,0,1,1,2,1},80] (* _Harvey P. Dale_, Sep 22 2014 *) %t A005044 Table[Length@Select[IntegerPartitions[n, {3}], Max[#]*180 < 90 n &], {n, 1, 100}] (* _Frank M Jackson_, Nov 04 2022 *) %o A005044 (PARI) a(n) = round(n^2 / 12) - (n\2)^2 \ 4 %o A005044 (PARI) a(n) = (n^2 + 6*n * (n%2) + 24) \ 48 %o A005044 (PARI) a(n)=if(n%2,n+3,n)^2\/48 \\ _Charles R Greathouse IV_, May 02 2016 %o A005044 (PARI) concat(vector(3), Vec((x^3)/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^70))) \\ _Felix Fröhlich_, Jun 07 2017 %o A005044 (Haskell) %o A005044 a005044 = p [2,3,4] . (subtract 3) where %o A005044 p _ 0 = 1 %o A005044 p [] _ = 0 %o A005044 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %o A005044 -- _Reinhard Zumkeller_, Feb 28 2013 %Y A005044 See A266755 for a version without the three leading zeros. %Y A005044 Cf. A002620, A070083, A008795. %Y A005044 Both bisections give (essentially) A001399. %Y A005044 (See the comments.) Cf. A008615 (p=1, q=3, offset=0), A008624 (3, 3, 0), A008679 (3, -1, 0), A026922 (1, 5, 1), A028242 (5, 7, 0), A030451 (6, 6, 0), A051274 (3, 5, 0), A052938 (8, 4, 0), A059169 (0, 6, 1), A106466 (5, 4, 0), A130722 (2, 7, 0) %Y A005044 Cf. this sequence (k=3), A288165 (k=4), A288166 (k=5). %Y A005044 Number of k-gons that can be formed with perimeter n: this sequence (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10). %K A005044 easy,nonn,nice %O A005044 0,8 %A A005044 _Robert G. Wilson v_ %E A005044 Additional comments from _Reinhard Zumkeller_, May 11 2002 %E A005044 Yaglom reference and mod formulas from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 27 2000 %E A005044 The reference to Alcuin of York (735-804) was provided by Hermann Kremer (hermann.kremer(AT)onlinehome.de), Jun 18 2004 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE