login
A354021
a(n) = Sum_{1 <= i < j < k < m <= n} (m*k*j*i)^2.
2
0, 0, 0, 0, 576, 21076, 296296, 2475473, 14739153, 68943381, 268880381, 909450751, 2742417535, 7522650135, 19058554515, 45123156390, 100771975590, 213877057086, 434042943246, 846542846578, 1593528150578
OFFSET
0,5
COMMENTS
a(n) is the sum of all products of four distinct squares of positive integers up to n, i.e., the sum of all products of four distinct elements from the set of squares {1^2, ..., n^2}.
LINKS
Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2) 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = Sum_{m=4..n} Sum_{k=3..m-1} Sum_{j=2..k-1} Sum_{i=1..j-1} (m*k*j*i)^2.
a(n) = n*(n+1)*(n-1)*(n-2)*(n-3)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(2*n - 5)*(5*n + 7)*(35*n^2 + 98*n + 72)/5443200.
a(n) = binomial(2*n+2,9)*(5*n + 7)*(35*n^2 + 98*n + 72)/(5!*4).
PROG
(PARI) {a(n) = n*(n + 1)*(n - 1)*(n - 2)*(n - 3)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(2*n - 5)*(5*n + 7)*(35*n^2 + 98*n + 72)/5443200};
CROSSREFS
Cf. A353021 (for nondistinct squares).
Cf. A000290 (squares), A000330 (sum of squares), A000596 (for two squares), A000597 (for three squares).
Cf. A001298 (for power 1).
Sequence in context: A330840 A226285 A370226 * A282780 A268638 A230522
KEYWORD
nonn,easy
AUTHOR
Roudy El Haddad, May 14 2022
STATUS
approved