login
A325191
Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.
8
0, 0, 2, 0, 3, 3, 0, 4, 6, 4, 0, 5, 10, 10, 5, 0, 6, 15, 20, 15, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 28, 56, 70, 56, 28, 8, 0, 9, 36, 84, 126, 126, 84, 36, 9, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0, 11, 55, 165, 330, 462
OFFSET
0,3
COMMENTS
The Heinz numbers of these partitions are given by A325196.
Under the Bulgarian solitaire step, these partitions form cycles of length >= 2. Length >= 2 means not the length=1 self-loop which occurs from the triangular partition when n is a triangular number. See A074909 for self-loops included. - Kevin Ryde, Sep 27 2019
FORMULA
Positions of zeros are A000217 = n * (n + 1) / 2.
a(n) = A074909(n) - A010054(n). - Kevin Ryde, Sep 27 2019
EXAMPLE
The a(2) = 2 through a(12) = 10 partitions (empty columns not shown):
(2) (22) (32) (322) (332) (432) (4322) (4332)
(11) (31) (221) (331) (422) (3321) (4331) (4422)
(211) (311) (421) (431) (4221) (4421) (4431)
(3211) (3221) (4311) (5321) (5322)
(3311) (43211) (5331)
(4211) (5421)
(43221)
(43311)
(44211)
(53211)
MATHEMATICA
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&, Append[ptn, 0]];
otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&, Append[ptn, 0]];
Table[Length[Select[IntegerPartitions[n], otb[#]+1==otbmax[#]&]], {n, 0, 30}]
PROG
(PARI) a(n) = my(t=ceil(sqrtint(8*n+1)/2), r=n-t*(t-1)/2); if(r==0, 0, binomial(t, r)); \\ Kevin Ryde, Sep 27 2019
KEYWORD
nonn,look
AUTHOR
Gus Wiseman, Apr 11 2019
STATUS
approved