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NAME: Irregular table: T'(n, k) equals the number of alignments of length k of
n strings each of length 3.

An alignment of n strings of various lengths is a way of inserting blank
characters into the n strings so that the resulting strings all have the same
length. This common length is called the length of the alignment. Insertion of
a blank character into the same position in each of the n strings is not allowed.
By writing the strings one under another we can consider an alignment of length
L of n strings as an n x L matrix.

Example. Listed below are the 12 alignments of length 4 of two strings ABC
and DEF.

A B C - A B - C A - B C - A B C
- D E F - D E F D FE F D - E F
A B C - A B - C A - B C - A B C
D - E F D - E F D E — F D FE - F
A B C - A B - C A - B C - A B C
D E - F D E F - D E F - D E F -

Sequence comparison and alignment is a central tool in computational
molecular biology and computational linguistics. For example, in molecular
biology a DNA sequence may be considered as a mathematical string
x = (x1,22,...,Ty), where z; € {A,C,G,T},i=1,2,...,n, is one of the four
nucleotides, adenine, cytosine, guanine and thymine. A typical problem is to
align and compare the sequence x with another DNA sequence y =
(y1,%2,- -, Ym), to measure the similarity between both sequences. Regions of
similarity may indicate functional, structural and/or evolutionary relationships
between the two sequences. For the number of alignments of length &k of n
strings of length 1 (resp. length 2) see |A131689 (resp. |A122193)). Here we are
considering the number of alignments of length k of n strings where each
string has length 3. The unique shortest possible alignment of n such strings
has length 3 and the longest possible alignments of n strings have length 3n.

1) Explicit formula for table entries.



https://oeis.org/A131689
https://oeis.org/A122193

Proof. Slowinski [SI'98] proved the following general result on the enumeration
of alignments of strings: the number of alignments of length L of n strings
S1,---,Sn Of lengths Iy, ..., 1, is given by the formula
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or equivalently,

L n .
Z _i(L H 1
=0 =1
Applying Slowingki’s result in the present case where [y =lo =--- =1, =3

produces (1).0

2) A series expansion for the row polynomials.

Let R, (z) denote the nth row polynomial of A299041.

Proof. Using the binomial expansion
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The coefficient of 2* on the right-hand side is

s (0 - ()6

i+j=k

Hence


https://oeis.org/A299041

3) Recurrence equation for the row polynomials.

Proof. By (2) we see that

oo . n Z
1+2)°R,( — > 1]. 4
(o' = 3 (5) gaper b2 (@
Now one easily checks that
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Hence applying the operator 4z d‘ig to (4) we obtain (for n > 1)
1 . d 3 =N\
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by (2). The result also holds for n = 0 if we take Ro(z) = 1.0

4) Recurrence equation for table entries.

Tn+1,k) = (];) (T(n,k)+3T(n,k—1)+3T(n,k —2)+ T(n,k —3))
(6)

Proof. Follows easily by equating the coefficient of the 2* term on either side
of (3).0

Remark. It is an easy consequence of (3) that for n > 1, the row polynomials
R, (x) have the form

Ru(x) =23 +--- 4+ T(n, 3n)z>

Therefore the boundary conditions for the recurrence (6) are 7(0,0) = 1 and
forn > 1, T(n,3) = 1 while T(n, k) =0 if (k < 3) or (k > 3n).



5) Double exponential generating function.

For comparison purposes we also include the double exponential generating
functions for [A131689 and (A122193.

A131689
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A122193
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Proof of (9).
The expansion of the left side of (9) is
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The coefficient of 77 % - in the expression on the right-hand side equals Z Z(;)n (’:),
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which equals T'(n, k) by (1). O
The expansion of the double e.g.f. for |[A299041 begins
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https://oeis.org/A131689
https://oeis.org/A122193
https://oeis.org/A299041

Exercise. Show the double exponential generating function

o0
A(z,y) = exp(—x)Zexp((é)y) . satisfies the partial differential equation
i=0
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R.(z) = 234 --- 23 (n factors) (10)

Dukes and White [DuWh’16], in their study of the combinatorics of web di-
agrams and web matrices, introduced a commutative and associative C-bilinear
product of power series, which they named the black diamond product and de-
noted by the symbol 4. The black diamond product of monomial polynomials
is given by the formula

o gt = i(nzk)<mnk>$n+k (11)

k=0

The stated expression for the row polynomial R, (x) as a black diamond product
may be easily proved by simple induction argument, making use of the following
particular case of (11):

3 n o n n 7’L+1 n+1 n+2 n+2 7’L+3 n+3
x> 42" = <3>x + 3( 3 )x +3 5 )T + g )T
REFERENCES

[Ba’18] P. Bala, |[Notes on A122193, uploaded to |A122193

[DuWh’16] M. Dukes and C. D. White, Web matrices: structural properties
and generating combinatorial identities, Electronic Journal Of
Combinatorics, 23(1) (2016), #P1.45.

[S1'98] J. B. Slowinski, The Number of Multiple Alignments,
Molecular Phylogenetics and Evolution 10:2 (1998), 264-266,
doi: 10.1006 /mpev.1998.0522


https://oeis.org/A122193/a122193.pdf
https://oeis.org/A122193
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p45
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p45
http://www.neurociencias.org.ve/cont-cursos-laboratorio-de-neurociencias-luz/Slowinski1998%20phylogenetics.pdf
http://dx.doi.org/10.1006/mpev.1998.0522



