login
A272718
Partial sums of gcd-sum sequence A018804.
10
1, 4, 9, 17, 26, 41, 54, 74, 95, 122, 143, 183, 208, 247, 292, 340, 373, 436, 473, 545, 610, 673, 718, 818, 883, 958, 1039, 1143, 1200, 1335, 1396, 1508, 1613, 1712, 1829, 1997, 2070, 2181, 2306, 2486, 2567, 2762, 2847, 3015, 3204, 3339, 3432, 3672, 3805, 4000, 4165
OFFSET
1,2
COMMENTS
a(n) is the sum of all pairs of greater common divisors for (i,j) where 1 <= i <= j <= n. - Jianing Song, Feb 07 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Olivier Bordellès, A note on the average order of the gcd-sum function, Journal of Integer Sequences, vol 10 (2007), article 07.3.3.
FORMULA
According to Bordellès (2007), a(n) = (n^2 / (2*zeta(2)))*(log n + gamma - 1/2 + log(A^12/(2*Pi))) + O(n^(1+theta+epsilon)) where gamma = A001620, A ~= 1.282427129 is the Glaisher-Kinkelin constant A074962, theta is a certain constant defined in terms of the divisor function and known to lie between 1/4 and 131/416, and epsilon is any positive number.
G.f.: (1/(1 - x))*Sum_{k>=1} phi(k)*x^k/(1 - x^k)^2, where phi(k) is the Euler totient function. - Ilya Gutkovskiy, Jan 02 2017
a(n) = (1/2)*Sum_{k=1..n} phi(k) * floor(n/k) * floor(1+n/k), where phi(k) is the Euler totient function. - Daniel Suteu, May 28 2018
From Jianing Song, Feb 07 2021: (Start)
a(n) = Sum_{i=1..n, j=i..n} gcd(i,j).
a(n) = (A018806(n) + n*(n+1)/2) / 2 = (Sum_{k=1..n} phi(k)*(floor(n/k))^2 + n*(n+1)/2) / 2, phi = A000010.
a(n) = A178881(n) + n*(n+1)/2.
a(n) = A018806(n) - A178881(n). (End)
EXAMPLE
The gcd-sum function takes values 1,3,5 for n=1,2,3; therefore a(3) = 1+3+5=9.
MATHEMATICA
b[n_] := GCD[n, #]& /@ Range[n] // Total;
Array[b, 100] // Accumulate (* Jean-François Alcover, Jun 05 2021 *)
PROG
(PARI) first(n)=my(v=vector(n), f); v[1]=1; for(i=2, n, f=factor(i); v[i] = v[i-1] + prod(j=1, #f~, (f[j, 2]*(f[j, 1]-1)/f[j, 1] + 1)*f[j, 1]^f[j, 2])); v \\ Charles R Greathouse IV, May 05 2016
CROSSREFS
Partial sums of A018804.
Sequence in context: A170879 A134578 A189979 * A301255 A009851 A026403
KEYWORD
nonn,easy
AUTHOR
Gareth McCaughan, May 05 2016
STATUS
approved