login
A260748
Dragon Curve triple point lower inverses. If D:[0,1] is a Dragon curve, then besides n, there are two larger integers p, q (with p < q) with D(A(n)/(15*2^k)) = D(A(p)/(15*2^k)) = D(A(q)/(15*2^k)), where k is any integer > log_2(A(q)/15).
5
13, 26, 37, 52, 73, 74, 97, 103, 104, 111, 133, 146, 148, 157, 193, 194, 199, 206, 207, 208, 209, 217, 221, 222, 223, 231, 253, 266, 277, 292, 296, 307, 313, 314, 317, 337, 373, 386, 388, 397, 398, 409, 412, 414, 416, 417, 418, 419, 431, 433, 434, 439, 442, 444, 446, 447, 449, 457, 461, 462, 463, 471, 493, 506, 517, 532, 553, 554, 577, 583, 584, 591, 592, 613, 614, 619, 626, 627, 628, 629, 631, 634, 637, 667, 673, 674, 677, 697, 733, 746, 757, 772, 776, 787, 793, 794, 797, 817, 853
OFFSET
1,1
COMMENTS
For the triples grouped, use Dragon(A260748(n)) = Dragon(A260749(n)) = Dragon(A260750(n)). (I.e., they're "conformal".)
Unlike A260747, A260749, A260750, and A260482, the first differences show a fractal pattern of repetitions.
See dragun in the MATHEMATICA section for an exact evaluator of a continuous, spacefilling Dragon function, and undrag, its multivalued inverse.
LINKS
Brady Haran and Don Knuth, Wrong turn on the Dragon, Numberphile video (2014)
Wikipedia, Dragon curve
EXAMPLE
For definiteness, we choose the Dragon in the complex plane with Dragon(0) = 0, Dragon(1) = 1, Dragon(1/3) = 1/5+2i/5
Then using A(1) = 13, for k=0,1,2, {dragun[13/15], dragun[13/30], dragun[13/60]}
-> {{2/3 - I/3}, {1/2 + I/6}, {1/6 + I/3}}
These have inverse images undrag/@First/@%
{{13/15}, {13/30, 7/10, 23/30}, {13/60, 7/20, 23/60}}
k=0 is too small--7/5 and 23/15 are off the end of the curve!
dragun[13/15/2^k] = dragun[21/15/2^k] = dragun[23/15/2^k], which empirically = (2/3 - I/3) (1/2 + I/2)^k
MATHEMATICA
(* by Julian Ziegler Hunts *)
piecewiserecursivefractal[x_, f_, which_, iters_, fns_] := piecewiserecursivefractal[x, g_, which, iters, fns] = ((piecewiserecursivefractal[x, h_, which, iters, fns] := Block[{y}, y /. Solve[f[y] == h[y], y]]); Union @@ ((fns[[#]] /@ piecewiserecursivefractal[iters[[#]][x], Composition[f, fns[[#]]], which, iters, fns]) & /@ which[x]));
dragun[t_] := piecewiserecursivefractal[t, Identity, Piecewise[{{{1}, 0 <= # <= 1/2}, {{2}, 1/2 <= # <= 1}}, {}] &, {2*# &, 2*(1 - #) &}, {(1 + I)*#/2 &, (I - 1)*#/2 + 1 &}]
undrag[z_] := piecewiserecursivefractal[z, Identity, If[-(1/3) <= Re[#] <= 7/6 && -(1/3) <= Im[#] <= 2/3, {1, 2}, {}] &, {#*(1 - I) &, (1 - #)*(1 + I) &}, {#/2 &, 1 - #/2 &}]
DeleteDuplicates[Reap[Do[If[Length[#] > 2, Sow[15*64*#[[1]]]] &@
undrag[dragun[k/15/64][[1]]], {k, 0, 288*3}]][[2, 1]]]
(* or 128 or 256 or ...*)
CROSSREFS
A260747 = A260748 U A260749 U A260750 = Superset of 3*A260482.
Sequence in context: A164007 A101870 A321714 * A256344 A044853 A044898
KEYWORD
nonn,frac,obsc
AUTHOR
Bill Gosper, Jul 30 2015
STATUS
approved