login
A258116
The Heinz numbers in increasing order of the partitions into distinct odd parts.
22
1, 2, 5, 10, 11, 17, 22, 23, 31, 34, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 94, 97, 103, 109, 110, 115, 118, 127, 134, 137, 146, 149, 155, 157, 166, 167, 170, 179, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230, 233, 235, 241, 253, 254, 257, 269, 274, 277, 283, 295, 298, 307, 310, 313, 314, 331, 334, 335, 341, 347
OFFSET
1,2
COMMENTS
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, the Heinz number of the partition [1, 1, 2, 4, 10] is 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
More terms are obtained if one replaces the 350 in the Maple program by a larger number.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
LINKS
EXAMPLE
170 is in the sequence because it is the Heinz number of the partition [1,3,7]; indeed, (1st prime)*(3rd prime)*(7th prime) = 2*5*17 = 170.
MAPLE
with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: DO := {}: for q to 350 do if `and`(nops(B(q)) = nops(convert(B(q), set)), map(type, convert(B(q), set), odd) = {true}) then DO := `union`(DO, {q}) else end if end do: DO;
# second Maple program:
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n-1)) do
if not false in map(i-> i[2]=1 and numtheory
[pi](i[1])::odd, ifactors(k)[2]) then break fi
od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 10 2016
MATHEMATICA
a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n-1]], True, k++, If[AllTrue[FactorInteger[k], #[[2]] == 1 && OddQ[PrimePi[#[[1]]]]&], Break[]]]; k]; Join[{1}, Array[a, 100]] (* Jean-François Alcover, Dec 10 2016 after Alois P. Heinz *)
CROSSREFS
Sequence in context: A257031 A167799 A179871 * A324812 A032874 A240032
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 20 2015
EXTENSIONS
a(1)=1 inserted by Alois P. Heinz, May 10 2016
STATUS
approved