login
A243265
Decimal expansion of the generalized Glaisher-Kinkelin constant A(5).
27
1, 0, 0, 9, 6, 8, 0, 3, 8, 7, 2, 8, 5, 8, 6, 6, 1, 6, 1, 1, 2, 0, 0, 8, 9, 1, 9, 0, 4, 6, 2, 6, 3, 0, 6, 9, 2, 6, 0, 3, 2, 7, 6, 3, 4, 7, 2, 1, 1, 5, 2, 4, 9, 1, 8, 4, 6, 0, 9, 2, 4, 7, 2, 1, 5, 6, 2, 3, 0, 1, 4, 2, 5, 0, 0, 3, 4, 1, 0, 0, 3, 2, 7, 7, 0, 1, 5, 0, 5, 6, 5, 9, 6, 5, 2, 7, 6, 4, 5, 5, 5, 9, 4
OFFSET
1,4
COMMENTS
Also known as the 5th Bendersky constant.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(5) = exp(137/15120-zeta'(-5)).
Equals exp(gamma/252 - 15*Zeta'(6)/(4*Pi^6)) * (2*Pi)^(1/252), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 25 2015
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^6-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(6)/6 = 1/252 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
1.00968038728586616112008919046263...
MATHEMATICA
RealDigits[Exp[137/15120-Zeta'[-5]], 10, 103] // First
RealDigits[Exp[N[(BernoulliB[6]/6)*(EulerGamma + Log[2*Pi] - Zeta'[6]/Zeta[6]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
KEYWORD
nonn,cons
AUTHOR
STATUS
approved