login
A242720
Smallest even k such that the pair {k-3,k-1} is not a twin prime pair and lpf(k-1) > lpf(k-3) >= prime(n), where lpf = least prime factor (A020639).
29
12, 38, 80, 212, 224, 440, 440, 854, 1250, 1460, 1742, 2282, 2282, 3434, 4190, 4664, 4760, 4760, 6890, 8054, 8054, 8054, 12374, 12830, 12830, 13592, 13592, 14282, 17402, 17402, 18212, 22502, 22502, 22502, 25220, 28202, 28202, 32234, 32402, 32402, 38012
OFFSET
2,1
COMMENTS
The sequence is nondecreasing. See comment in A242758.
a(n) >= prime(n)^2+3. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture. There are only a finite number of composite numbers of the form a(n)-1. Peter J. C. Moses found only two: a(16)-1 = 4189 = 59*71 and a(20)-1 = 6889 = 83^2 and no others up to a(2501). Most likely, there are no others. - Vladimir Shevelev, Jun 09 2014
LINKS
V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014, (Section 10).
FORMULA
Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246821). - Vladimir Shevelev, Sep 02 2014
For n>=3, a(n) >= (prime(n)+1)^2 + 2. Equality holds for terms of A246824. - Vladimir Shevelev, Sep 04 2014
MATHEMATICA
lpf[n_] := FactorInteger[n][[1, 1]];
Clear[a]; a[n_] := a[n] = For[k = If[n <= 2, 2, a[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
Table[a[n], {n, 2, 50}] (* Jean-François Alcover, Nov 02 2018 *)
PROG
(PARI)
lpf(k) = factorint(k)[1, 1];
vector(60, n, k=6; while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)<prime(n+1), k+=2); k) \\ Colin Barker, Jun 01 2014
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 21 2014
STATUS
approved