login
A208895
Number of non-congruent solutions to x^2 + y^2 + z^2 + t^2 == 1 (mod n).
10
1, 8, 24, 64, 120, 192, 336, 512, 648, 960, 1320, 1536, 2184, 2688, 2880, 4096, 4896, 5184, 6840, 7680, 8064, 10560, 12144, 12288, 15000, 17472, 17496, 21504, 24360, 23040, 29760, 32768, 31680, 39168, 40320, 41472, 50616, 54720, 52416, 61440, 68880, 64512
OFFSET
1,2
LINKS
László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
László Toth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
FORMULA
Conjecture: a(n) = n*Sum_{d|2*n} d^2*mu(2*n/d)/3. - Gionata Neri, Feb 18 2018
From Amiram Eldar, Oct 18 2022: (Start)
Multiplicative with a(p^e) = p^(3*e)*(1-1/p^2) if p > 2, and a(2^e) = 8^e.
Sum_{k=1..n} a(k) ~ c * n^4 + O(n^3), where c = 2/(7*zeta(3)) = 0.237687... (Tóth, 2014). (End)
MAPLE
A208895 := proc(n)
local a, pe, p, nu ;
a := 1 ;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
nu := op(2, pe) ;
if p > 2 then
a := a*p^(3*nu)*(1-1/p^2) ;
else
a := a*8^nu ;
end if;
end do:
a ;
end proc:
seq(A208895(n), n=1..20) ; # R. J. Mathar, Jun 23 2018
MATHEMATICA
a[n_] := Length[Union[Flatten[Table[If[Mod[x^2 + y^2 + z^2 + t^2, n] == 1, {x, y, z, t}], {x, n}, {y, n}, {z, n}, {t, n}], 3]]] - 1; Join[{1}, Table[a[n], {n, 2, 30}]]
f[p_, e_] := p^(3*e) * (1-1/p^2); f[2, e_] := 8^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 8^f[i, 2], f[i, 1]^(3*f[i, 2]) * (1 - 1/f[i, 1]^2))); } \\ Amiram Eldar, Oct 18 2022
CROSSREFS
Sequence in context: A066605 A066497 A205963 * A111071 A090336 A364245
KEYWORD
nonn,mult
AUTHOR
STATUS
approved