login
A174405
Partial sums of Sum_{k=1..n} n/gcd(n,k), or partial sums of Sum_{d|n} d*phi(d) (see A057660).
5
1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, 462, 619, 748, 895, 1066, 1339, 1522, 1865, 2096, 2397, 2730, 3237, 3538, 4059, 4530, 5077, 5550, 6363, 6804, 7735, 8418, 9195, 10014, 10917, 11588, 12921, 13950, 15049, 15952, 17593, 18496, 20303, 21524, 22805, 24326, 26489, 27686, 29787, 31350, 33261, 34988
OFFSET
1,2
COMMENTS
The subsequence of primes in this sequence begins 11, 43, 107, 211, 619, 5077, 26489. The subsequence of squares in this sequence begins 1, 4, 64, 18496 = 2^6 * 17^2.
LINKS
Marko Riedel, answer to 'Euler phi function, number theory', MathStackExchange, 2014.
Günter Rote, Moritz Rüber, and Morteza Saghafian, Grid Peeling of Parabolas, arXiv:2402.15787 [cs.CG], 2024. See p. 9.
J. Sándor and A. V. Kramer, Über eine zahlentheoretische Funktion. Mathematica Moravica, 3 (1999), 53-62.
FORMULA
a(n) = Sum_{i=1..n} A057660(i) = Sum_{i=1..n} Sum_{k=1..i} i/gcd(i,k) = Sum_{i=1..n} ( Sum_{d|i} A000010(d^2) ) = Sum_{i=1..n} ( Sum_{d|i} d*A000010(d) ) = Sum_{i=1..n} (sum of the orders of the elements in a cyclic group with i elements).
Riedel, and Sándor&Kramer give a(n) ~ 2/Pi^2 * zeta(3) * n^3. - Charles R Greathouse IV, May 21 2014; Günter Rote, November 3 2021
G.f.: (1/(1 - x))*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
a(n) = Sum_{k=1..n} k * phi(k) * floor(n/k), where phi(k) is the Euler totient function. - Daniel Suteu, May 30 2018
EXAMPLE
a(9) = 1 + 3 + 7 + 11 + 21 + 21 + 43 + 43 + 61 = 211 is prime.
MATHEMATICA
f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate @ Array[a, 100] (* Amiram Eldar, Nov 21 2020 *)
PROG
(PARI) a(n)=sum(k=1, n, sumdiv(k, d, eulerphi(d)*d)) \\ Charles R Greathouse IV, May 21 2014
(PARI) a(n) = sum(k=1, n, k * eulerphi(k) * (n\k)); \\ Michel Marcus, May 30 2018
CROSSREFS
Sequence in context: A295957 A259574 A008249 * A016274 A092656 A269743
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Nov 27 2010
STATUS
approved