login
Greatest number m such that the fractional part of e^A153704(n) >= 1-(1/m).
7

%I #7 May 10 2019 16:50:34

%S 3,23,27,261,348,2720,72944,347065,244543

%N Greatest number m such that the fractional part of e^A153704(n) >= 1-(1/m).

%F a(n) = floor(1/(1-fract(e^A153704(n)))), where fract(x) = x-floor(x).

%e a(2) = 23, since 1-(1/24) = 0.9583... > fract(e^A153704(2)) = fract(e^8) = 0.95798... >= 0.95652... >= 1-(1/23).

%t A153704 = {1, 8, 19, 178, 209, 1907, 32653, 119136, 220010};

%t Table[fp = FractionalPart[E^A153704[[n]]]; m = Floor[1/fp];

%t While[fp >= 1 - (1/m), m++]; m - 1, {n, 1, Length[A153704]}] (* _Robert Price_, May 10 2019 *)

%Y Cf. A153664, A153672, A153680, A153688, A153696, A153704, A154130, A153716, A153724.

%Y Cf. A000149.

%K nonn,more

%O 1,1

%A _Hieronymus Fischer_, Jan 06 2009

%E a(8)-a(9) from _Robert Price_, May 10 2019