login
A130721
Sum of the cubes of the number of standard Young tableaux over all partitions of n.
2
1, 1, 2, 10, 64, 596, 8056, 130432, 2534960, 59822884, 1718480368, 56754444440, 2110577206816, 87981286785328, 4129351961475872, 218382856010529472, 12813477368159567200, 822337333595479929044, 57213666993723455063392, 4305630141314873304140008
OFFSET
0,3
COMMENTS
The sum of the zeroth power of the number f(p) of standard Young tableaux gives the partition function (A000041), the sum of the first power of f(p) gives the involution function (A000085), the sum of the squares of f(p) gives the factorial function (A000142), so this sequence is the natural one after them.
LINKS
FORMULA
For p a partition of n, let f(p) be the number of standard Young tableaux with shape p. Then a(n) = sum(f(p)^3) where the sum ranges over all partitions p of n.
EXAMPLE
a(4) = 1^3 + 3^3 + 2^3 + 3^3 + 1^3 because the five partitions of 4 (namely 4, 3+1, 2+2, 2+1+1, 1+1+1+1) have respectively 1, 3, 2, 3, 1 standard Young tableaux.
MATHEMATICA
h[l_] := With[{n=Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, k_, l_] := g[n, i, l, k] = If[n == 0, h[l]^k, If[i < 1, 0, g[n, i - 1, k, l] + If[i > n, 0, g[n - i, i, k, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, 3, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A208447.
Sequence in context: A323666 A318814 A371547 * A167449 A064170 A151410
KEYWORD
nonn
AUTHOR
David A. Madore, Jul 03 2007
EXTENSIONS
More terms from Alois P. Heinz, Feb 26 2012
STATUS
approved