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Abstract

We consider the problem of counting the number of ways of divid-
ing a rectangle of integer side lengths n, m, into rectangles of integer
side lengths. Similar problems have been considered by many authors,
though most authors put more restrictions on the problem. E.g., see
[1]. We give a recursive method of finding the sequences of solutions.
The sequence with n = 2 is sequence A034999 in Sloan’s database [2].

1 Result and Examples

Let am,n be the number of ways of dividing an n × m rectangle into a
disjoint union of rectangles with integer length sides. We prove the following:

Theorem 1.

am,n = 1 · (Mm)n−1 · 1t, (1)

where 1 = (1, . . . , 1) ∈ Z2m−1

, and Mm is a 2m−1 × 2m−1 matrix defined
recursively as follows:

M1 = (2), B1 = (1), Mm+1 =

(

Mm Bm

Bm 2Mm

)

, Bm+1 =

(

Bm Bm

Bm Mm

)

.

Remark 1. We can convert these expressions to give recurrence relations,
with coefficients as in the characteristic polynomial of Mm. E.g., a3,1, . . . a3,4

are given in Tables 1, and for n ≥ 4,

a3,n = 18a3,n−1 − 100a3,n−2 + 216a3,n−3 − 153a3,n−4.

∗Whilst working on this article, first year undergraduate Joshua Smith held a Louisiana

State University “Chancellor’s Future Leaders in Research” scholarship.
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1 2 3 4 5 6

1 1 2 4 8 16 32
2 2 8 34 148 650 2864
3 4 34 322 3164 31484 314662
4 8 148 3164 70878 1613060 36911922
5 16 650 31484 1613060 84231996 4427635270
6 32 2864 314662 36911922 4427635270 535236230270
7 64 12634 3149674 846280548 233276449488 64878517290010

Table 1: Numbers of ways of dividing an n × m rectangle, am,n.

Example 2. Table 1 shows some data computed using the formula (1),
Figure 1 gives an example, and the matrices M2, M3, M4 are as follows:

(

2 1
1 4

)

,









2 1 1 1
1 4 1 2
1 1 4 2
1 2 2 8
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2 1 1 1 1 1 1 1
1 4 1 2 1 2 1 2
1 1 4 2 1 1 2 1
1 2 2 8 1 2 1 4
1 1 1 1 4 2 2 2
1 2 1 2 2 8 2 4
1 1 2 1 2 2 8 4
1 2 1 4 2 4 4 16

























.

Figure 1: Ways of dividing a 3 × 2 rectangle into a union of rectangles.

2 Dividing rectangles into strips

In order to count divisions of rectangles, we cut the large rectangle into
strips, as in the example in Figure 2. Two strips can only occur next to each
other if the “fingers” sticking out to the right of one agree with those on
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Figure 2: Slicing up a 4× 7 rectangle (divided into rectangles) into 6 strips
(plus 2 end edges on far left and right).

the left of the other. So counting divisions of rectangles becomes a problem
about sequence of strips. We formally define the strips as follows:

Definition 1. A strip of length m is a triple (Fl, U, Fr), where the left

of the strip is a sequence Fl = (fl,1, fl,1, . . . , fl,m−1), the right is Fr =
(fr,1, fr,1, . . . , fr,m−1), with fl,i, fr,i ∈ {0, 1} for 1 ≤ i < m. The middle is
a sequence U = (u1, . . . , um) satisfying a kind of“gluing” condition:

fli 6= fri ⇒ ui = ui+1 = 1

fli = fri = 0 ⇒ ui = ui+1.

We define Sm to be the set of all possible strips of length m.

Example 3. Figure 3 shows the geometrical interpretation of all elements
of S2, given below, where commas in sequences of 0s and 1s are omitted:

S2 =

{

(0, 00, 0), (0, 11, 0), (0, 11, 1), (1, 11, 0),
(1, 00, 1), (1, 01, 1), (1, 10, 1), (1, 11, 1),

}

Figure 3: Possible strips in a 2 × n divided rectangle.

Definition 2. We define a directed graph Gm. The vertices of Gm are given
by Sn. There is a directed edge from Sa = (Fal, Ua, Far) to Sb = (Fbl, Ub, Fbr)
if and only if Far = Fbl.

Remark 2. Note that the Gm has a2,m elements, the number of ways of
dividing a 2 × m rectangle, since this is essentially what the strips are.
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Figure 4: Paths in G2, on the left, correspond to divisions of an 2×n rectangle
into rectangles. The weighted graph H2, on the right, is a projection of G2.
The weights of the vertices are the number of vertices of G2 which map to a
vertex of H2. The strips in this picture are rotated through 90◦.

Example 4. Figure 4 shows G2 (turned on its side).

The graph Gm has been constructed so that:

Proposition 5. The number of ways of dividing a m × n rectangle into a
union of rectangles with integer side lenghts is given by the number of paths
of length n − 1 in the graph Gm.

Corollary 6. The number of ways of dividing a m×n rectangle into integer
length sided rectangles is given by 1·An−1

m ·1t where 1 = (1, 1, . . . , 1) ∈ Za2,m,
and Am is the adjacency matrix of Gm.

3 The matrix Mm

We will now replace the matrix Am with a matrix Mm, which corresponds
to projecting from Gm to a certain weighted graph Hm. Vertices of Hm are
given by pairs (Fa, Fb) of possible left and right parts of of strips, and the
weight is the number of ways to insert a U to get a valid strip (Fa, U, Fb).
Mm will be the weighted adjacency matrix for Hm. It is not hard to see
that a path v1, . . . , vk in Hm, with the vertex vi having weight wi, lifts to
w1w2 · · ·wk paths in Gm. To define Mm, first we index the Fa as follows.

Definition 3. For an integer x, 1 ≤ x ≤ 2m−1, with x − 1 =
∑m−2

j=0 ej2
j,

where ej ∈ {0, 1} for 0 ≤ j < m, we set Fx = (e0, e1, . . . , em−2).

Now we define the matrix Mm so that the entry Mm(a, b) gives the
number of strips with left side Fa and right side Fb:
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a, b 7→ a0, b0 a, b 7→ a1, b1

and there is a
full horizontal

then we are

free to either add a middle

line or no middle line in the new end block

and there is no
horizontal line

here

exactly the same as the previous

end block middle

line here

If these parts

are identical

If these parts

are identical

then the new

end block middle must be

Figure 5: Extending a length m strip to a length m + 1 strip

Definition 4. For a positive integer m, we define the matrix Mm to be a
2m−1 by 2m−2 matrix, with entry Mm(a, b) given by

Mm(a, b) = #{x ∈ Sm : x = (Fa, U, Fb) for some U}.

Since there are Mn(i, j) strips with left side Fi and right side Fj , and
since a strip with left side Fi and right side Fj can join to a strip with left
side Fk and right side Fl if and only if j = k, we have the following result:

Proposition 7. The number of ways of dividing an n × m rectangle into
integer sided rectangles is given by

1 · (Mm)n−1 · 1t,

where Mm is as in Defintion 4.

4 Inductive construction of Mm

Because of the correspondence between sequeneces in {0, 1} and integers, we
will abuse notation and write a to mean either an integer 1 ≤ a ≤ 2m−1, or
a sequence of 2m−1 0 and 1s. Then for ε ∈ {0, 1}, the notation aε means the
sequence formed by appending ε to the end of the sequence a, which also
corresponds to the integer a + 2m. Throughout this section k = Mm(a, b).

Suppose we have computed Mm. I.e., we have computed the number of
strips with left side Fa and right side Fb, for 1 ≤ a, b ≤ 2m−1. There are two
ways to extend Fa and Fb to the n + 1 case—either add 0 or 1 to a and b.
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Extending from Mm(a, b) to Mm+1(a, b)

Suppose there are k strips with left side Fa and right side Fb, for a, b some
sequences of m − 1 0s and 1s. Then Fa0, Fb0 are also joined in exactly k
ways to form a strip, since the mid-line of the last section must be continued
exactly as the immediately above section. An example is shown in Figure 5.
Thus for 1 ≤ a, b ≤ 2m−1 we have, Mm+1(a, b) = Mm(a, b).

Extending from Mm(a, b) to Mm+1(a + 2m, b + 2m)

The strips Fa1 and Fb1 can be joined in 2k ways, because there is now a box
at the bottom, which is free to either contain or not contain a vertical line.
An example is shown in Figure 5. Thus Mm+1(a+2m, b+2m) = 2Mm(a, b).

Considerations so far show that for some Bm, we have

Mm+1 =

(

Mm Bm

Bm 2Mm

)

. (2)

Extending from Mm(a, b) to Mm+1(a + 2m, b) or Mm+1(a, b + 2m)

The strips corresponding to a0 and b1 join in either k or k/2 ways, since by
Definition 1, in (Fa0, U, Fb1), we must have um = 1 and um−1 = 1, whereas
for (Fa, U, Fb) possibly no constraint on um. To determine which case we
are in, we consider the last elements of the sequences a and b.

The case a = a′1 , b = b′1

If we have a = a′1 and b = b′1, then strips corresponding to a = a′10 and
b = b′11 can join in k/2 ways, since half the possible strips will not contain
a vertical line in the nth place, but in the extension they must contain this
line. An example is shown in the right picture in Figure 6.

We have seen that the part of Mm−1 corresponding to pairs of the form
a′1, b′1 is given by 2Mm−2. Similarly, values for pairs of the form a′10, b′11
are given by Mm−2, so Bm has the form

Bm =

(

? ?
? Mm−1

)

.

The cases a = a′0, b = b′1 and a = a′1, b = b′0

Strips corresponding to a′00 and b′11 can join in k ways, since we will be
able to continue exactly in the same manner as for the middle of the mth
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a′0, b′1 7→ a′00, b′11 a′1, b′0 7→ a′00, b′11 a′1, b′1 7→ a′00, b′11

Figure 6: Example of extending strips.

block, since the m and m + 1 situations will be the same. An example is
shown in Figure 6.

Similarly, strips corresponding to a′10 and b′01 can join in k ways, since
there must be a vertical line at the mth position, which continues to the
m + 1th row. So Bm has the form

Bm =

(

Cm Bm−1

Bm−1 Mm−1

)

, (3)

where Cm is still to be determined.

The case a = a′0 , b = b′0

If we have a = a′0 and b = b′0, and M(a′0, b′0) = k, then to determine
M(a′00, b′01), we must consider the last terms of a′ and b′. By similar
considerations to the previous 3 cases, we find that

Cm =

(

Cm−1 Bm−2

Bm−2 Mm−2

)

, (4)

which tells us that Cm = Bm−1. From (3) and (4), we obtain

Bm =

(

Bm−1 Bm−1

Bm−1 Mm−1

)

. (5)

Proof of Theorem 1. Theorem 1 now follows from (5), (2), and the determi-
nation of B1 and M1, which by considering 1 × 1 and 2 × 2 rectangles are
easily seen to be the 1 × 1 matrices (1) and (2) respectively.

Remark 3. Instead gluing together strips, one can consider gluing together
small squares, which come in eight types, as in Figure 4. This was the basis
of the computer program written to draw the diagrams in this article.
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Figure 7: Ways of dividing a 3 × 3 rectangle into a union of rectangles.

Remark 4. Since there is a symmetry between Fa and Fa, where ε1 . . . εn =
εn . . . ε1, the matrix Mn can be replaced by a matrix Nn with 2n−2 +2bn/2c−1

rows and columns, indexed by the sets [a] = {a, a} for 0 ≤ a < 2n. We have
am,n = 1 · Nn−1

m · v, where v has entries v[a] = |{a, a}|, and 1 = (1, . . . , 1).
For example, for m = 4, with ordering of [a] given by [000], [001], [010], [011],
[101], [111], we have v = (1, 2, 1, 2, 1, 1), and

N4 =

















2 1 1 1 1 1
2 5 2 3 4 4
1 1 4 2 1 1
2 3 4 9 4 8
1 2 1 2 8 4
1 2 1 4 4 16
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