login
A107428
Number of gap-free compositions of n.
22
1, 2, 4, 6, 11, 21, 39, 71, 141, 276, 542, 1070, 2110, 4189, 8351, 16618, 33134, 66129, 131937, 263483, 526453, 1051984, 2102582, 4203177, 8403116, 16800894, 33593742, 67174863, 134328816, 268624026, 537192064, 1074288649, 2148414285, 4296543181, 8592585289
OFFSET
1,2
COMMENTS
A gap-free composition contains all the parts between its smallest and largest part. a(5)=11 because we have: 5, 3+2, 2+3, 2+2+1, 2+1+2, 1+2+2, 2+1+1+1, 1+2+1+1, 1+1+2+1, 1+1+1+2, 1+1+1+1+1. - Geoffrey Critzer, Apr 13 2014
LINKS
P. Hitczenko and A. Knopfmacher, Gap-free compositions and gap-free samples of geometric random variables, Discrete Math., 294 (2005), 225-239.
FORMULA
a(n) ~ 2^(n-2). - Alois P. Heinz, Dec 07 2014
G.f.: Sum_{j>0} Sum_{k>=j} C({j..k},x) where C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) is the g.f. for compositions such that the set of parts equals {s} with C({},x) = 1. - John Tyler Rascoe, Jun 01 2024
EXAMPLE
From Gus Wiseman, Oct 04 2022: (Start)
The a(0) = 1 through a(5) = 11 gap-free compositions:
() (1) (2) (3) (4) (5)
(11) (12) (22) (23)
(21) (112) (32)
(111) (121) (122)
(211) (212)
(1111) (221)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t!,
`if`(i<1 or n<i, 0, add(b(n-i*j, i-1, t+j)/j!, j=1..n/i)))
end:
a:= n-> add(b(n, i, 0), i=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Apr 14 2014
MATHEMATICA
Table[Length[Select[Level[Map[Permutations, IntegerPartitions[n]], {2}], Length[Union[#]]==Max[#]-Min[#]+1&]], {n, 1, 20}] (* Geoffrey Critzer, Apr 13 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
CROSSREFS
The unordered version (partitions) is A034296, ranked by A073491.
The initial case is A107429, unordered A000009, ranked by A333217.
The unordered complement is counted by A239955, ranked by A073492.
These compositions are ranked by A356841.
The complement is counted by A356846, ranked by A356842
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
Sequence in context: A049870 A093970 A333098 * A086379 A096460 A322051
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 26 2005
EXTENSIONS
More terms from Vladeta Jovovic, May 26 2005
STATUS
approved