login
A103254
Positive integers x such that there exist positive integers y and z satisfying x^3 + y^3 = z^2.
6
1, 2, 4, 7, 8, 9, 10, 11, 14, 16, 18, 21, 22, 23, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 44, 46, 49, 50, 56, 57, 63, 64, 65, 70, 72, 78, 81, 84, 86, 88, 90, 91, 92, 95, 98, 99, 100, 104, 105, 110, 112, 114, 121, 122, 126, 128, 129, 130, 132, 136, 140, 144, 148, 152, 154, 158, 160, 162, 169, 170, 175, 176, 177, 183, 184, 189, 190, 193, 196, 198, 200
OFFSET
1,2
COMMENTS
A001105 is a subset (excluding 0), since (x, y, z) = (A001105(k), A001105(k), A033430(k)) satisfies x^3 + y^3 = z^2. - R. J. Mathar, Sep 11 2006
A parametric solution: {x,y,z} = {g*(4*e + g)*(4*e^2 + 8*e*g + g^2), 2*g*(4*e + g)*(-2*e^2 +2*e*g + g^2), 3*g^2*(4*e + g)^2*(4*e^2 + 2*e*g + g^2)}, provided (-2*e^2 +2*e*g + g^2) > 0. - James Mc Laughlin, Jan 27 2007
Allowing y = 0 would give the same sequence, since x^3 = z^2 implies x is a square, and all squares are terms since (t^2)^3 + (2*t^2)^3 = (3*t^3)^2. On the other hand, allowing y to be negative would introduce new terms: 71, 74, and 155 would be terms since 71^3 + (-23)^3 = 588^2, 74^3 + (-47)^3 = 549^2, and 155^3 + (-31)^3 = 1922^2. See A356720. - Jianing Song, Aug 24 2022
LINKS
Fritz Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
EXAMPLE
x=7, y=21, 7^3 + 21^3 = 98^2. 7 is the 4th term in the list.
Other solutions are (x, y, z)=(1, 2, 3), (4, 8, 24), (7, 21, 98), (9, 18, 81), (10, 65, 525), (11, 37, 228), (14, 70, 588), (16, 32, 192), (21, 7, 98), (22, 26, 168), (23, 1177, 40380), ...
PROG
(Magma) [ k : k in [1..200] | exists{P : P in IntegralPoints(EllipticCurve([0, k^3])) | P[1] gt 0 and P[2] ne 0 } ]; // Geoff Bailey, Jan 28 2007
CROSSREFS
See A103255 for another version.
Sequence in context: A342777 A173416 A356720 * A299419 A083454 A047542
KEYWORD
nonn
AUTHOR
Cino Hilliard, Mar 20 2005
EXTENSIONS
Recomputed and extended to 48 terms by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using Magma, Jan 28 2007
Terms 104..200 added by Joerg Arndt, Sep 29 2012
STATUS
approved