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Williams and Guy extended Lucas' two parameter family of second-order linear
divisibility sequences to a three parameter family of fourth-order linear divisi-
bility sequences. We give a formula using (bivariate) Chebyshev polynomials for
the terms of the Williams and Guy sequences. We brie�y consider Chebyshev
analogs of two other families of linear divisibility sequences.

1. Introduction. A sequence {a(n)}n≥1 of elements of an integral domain
D is a divisibility sequence if a(n) divides a(m) whenever n divides m and
a(n) 6= 0. We call {a(n)} a linear divisibility sequence of order k if the sequence
also satis�es a homogeneous linear recurrence of order k with coe�cients from
the domain D.
If P1 and P2 are a pair of nonzero integers, the sequence

U0 = 0, U1 = 1, Un = P1Un−1 − P2Un−2, n ≥ 2, (1)

is called a Lucas sequence. Lucas [3] proved that each sequence {Un}n≥1 is a
second-order integer linear divisibility sequence. An explicit formula is

Un = Un(α, β) =
αn − βn

α− β
, n ≥ 0, (2)

where α and β are the zeros of the associated quadratic x2 − P1x+ P2, so that

α+ β = P1

αβ = P2 (3)

(we assume α− β 6= 0, or equivalently P 2
1 6= 4P2).

The generating function of the Lucas sequence Un is readily calculated as∑
n≥1

Unz
n =

z

1− P1z + P2z2
. (4)

Williams and Guy [6] extended the results of Lucas and found a family of fourth-
order linear divisibility sequences Wn = Wn(P1, P2, Q), depending on the pa-
rameters P1, P2 and a third integer parameter Q, and having the generating
function ∑

n≥1

Wnz
n =

z(1−Qz2)
1− P1z + (P2 + 2Q)z2 − P1Qz3 +Q2z4

. (5)

Our purpose in this note is to prove the following expression for Wn, analogous
to equation (2), but involving Chebyshev polynomials rather than monomial
polynomials:

Wn =
tn(α,Q)− tn(β,Q)

α− β
, (6)
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where tn(x, s) denotes the monic bivariate Chebyshev polynomial of the �rst
kind. When Q = 0, the generating function (5) reduces to (4), and (6) becomes
(2).

2. Bivariate Chebyshev polynomials. We recall some well-known results
about Chebyshev polynomials - see, for example, [4].
The classical Chebyshev polynomials of the �rst kind Tn(x) satisfy the second-
order linear recurrence

Tn(x) = 2xTn−1(x)− Tn−2(x) (7)

with the starting values T0(x) = 1 and T1(x) = x.
They are given by the explicit formula

Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
(8)

and have the generating function∑
n≥0

Tn(x)z
n =

1− xz
1− 2xz + z2

. (9)

The Chebyshev polynomials Tn(x) satisfy the composition rule

Tn(Tm(x)) = Tnm(x), n,m ≥ 0, (10)

which is also satis�ed by the sequence of monomial polynomials {xn}. As we will
see later, it is this composition property that allows us to construct divisibility
sequences.
In order to obtain the full 3-parameter family of divisibility sequences found by
Williams and Guy, it turns out we need to work with two variable Chebyshev
polynomials tn(x, s) de�ned as follows. Let s 6= 0 be a complex parameter. The
bivariate Chebyshev polynomials tn(x, s) of the �rst kind are de�ned by

tn(x, s) = 2(
√
s)nTn

(
x

2
√
s

)
(11)

(the factors of 2 are included to ensure tn(x, s) is a monic polynomial in the
variable x). The �rst few values are

t0(x) = 2 t3(x) = x3 − 3sx

t1(x) = x t4(x) = x4 − 4sx2 + 2s2

t2(x) = x2 − 2s t5(x) = x5 − 5sx3 + 5s2x.

The polynomials tn(x, s) appear in the literature under a variety of names.
Bircan et al. [1] call them adapted Chebyshev polynomials. They are also known
as the Dickson polynomials of the �rst kind [7], usually denoted by Dn(x, s).
The following properties of the bivariate Chebyshev polynomials are easily de-
rived from the corresponding properties of the classical Chebyshev polynomials.
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There is the explicit formula

tn(x, s) =

(
x+
√
x2 − 4s

2

)n
+

(
x−
√
x2 − 4s

2

)n
. (12)

The generating function is∑
n≥0

tn(x, s)z
n =

2− xz
1− xz + sz2

, (13)

from which we get the second-order linear recurrence
tn(x, s) = xtn−1(x, s)− stn−2(x, s) (14)

with starting values t0(x, s) = 2, t1(x, s) = x. Therefore, tn(x, s) ∈ Z[x, s]. In
particular, from (14) we have tn(x, 0) = xn for n ≥ 1, so the bivariate Chebyshev
polynomials may be viewed as generalizations of the monomial polynomials.
Using (10), we �nd the composition rule for the bivariate Chebyshev polynomials
takes the form

tm(tn(x, s), s
n) = tnm(x, s), n,m ≥ 0. (15)

We are now ready to construct some divisibility sequences.

Proposition 2.1 Let Q be an integer. The sequence of bivariate polynomials
{Wn(x, y)}n≥1 de�ned by

Wn(x, y) =
tn(x,Q)− tn(y,Q)

x− y
(16)

is a fourth-order linear divisibility sequence in the domain Z[x, y].
Proof
Firstly, we show Wn(x, y) is a polynomial in the ring Z[x, y] for each natural
number n.
The elementary identity

xn − yn

x− y
= x(n−1) + x(n−2)(−y) + · · ·+ (−y)(n−1), n = 1, 2, 3, ... (17)

tells us that the polynomial x − y divides the polynomial xn − yn in the ring
Z[x, y]. Since Q is an integer we have tn(x,Q)∈ Z[x]. It follows from (17) that
x − y divides the polynomial tn(x,Q) − tn(y,Q) in the ring Z[x, y], and hence
Wn(x, y) ∈ Z[x, y].
To show the polynomial Wn(x, y) divides the polynomial Wnm(x, y) for all nat-
ural numbers n and m we use the composition rule (15) to �nd

Wnm(x, y)

Wn(x, y)
=

tnm(x,Q)− tnm(y,Q)

tn(x,Q)− tn(y,Q)

=
tm(tn(x,Q), Qn)− tm(tn(y,Q), Qn)

tn(x,Q)− tn(y,Q)

=
tm(X,Qn)− tm(Y,Qn)

X − Y
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where X = tn(x,Q) ∈ Z[x] and Y = tn(y,Q) ∈ Z[y]. Thus, by the �rst part
of the proof, Wnm(x, y)/Wn(x, y) is a polynomial in Z[X,Y ], and is therefore a
polynomial in Z[x, y]. Hence Wn(x, y) divides Wnm(x, y) in the ring Z[x, y].
Using (13), we calculate the generating function∑

n≥1

Wn(x, y)z
n =

1

x− y

(
2− xz

1− xz +Qz2
− 2− yz

1− yz +Qz2

)

=
z(1−Qz2)

(1− xz +Qz2)(1− yz +Qz2)

=
z(1−Qz2)

1− (x+ y)z + (xy + 2Q)z2 − (x+ y)Qz +Q2z4
.(18)

From the form of the denominator in (18) we see that the polynomial Wn =
Wn(x, y) satis�es the fourth-order linear recurrence

Wn = (x+y)Wn−1−(xy+2Q)Wn−2+(x+y)QWn−3−Q2Wn−4, n ≥ 4. (19)

�

Clearly, we can get linear divisibilty sequences of integers from the sequence of
polynomials Wn(x, y) in Proposition 2.1 by suitably specializing x and y, for
example, by taking x and y to be distinct integers. In fact, a wider class of
integer divisibility sequences is possible. Observe that the polynomial Wn(x, y)
is symmetric in x and y and hence, by the fundamental theorem of symmetric
polynomials, can be written as a polynomial with integer coe�cients in the el-
ementary symmetric polynomials x + y and xy. The same holds true for the
symmetric polynomials Wnm(x, y)/Wn(x, y) for all natural numbers n and m.
Therefore, in order for {Wn(x, y)} to be an integer divisibility sequence, it suf-
�ces to choose values for x and y so that both x + y and xy are integers.
Accordingly, let P1 and P2 be a pair of nonzero integers and de�ne complex
numbers α and β by

α+ β = P1

αβ = P2, (20)

so that α, β are the roots of the quadratic equation x2 − P1x + P2 = 0. We
suppose further that α− β 6= 0, or equivalently P 2

1 6= 4P2. Then it follows from
Proposition 2.1 and the preceeding remarks that

Wn(α, β) =
tn(α,Q)− tn(β,Q)

α− β
, n ≥ 1, (21)

is a well-de�ned fourth-order linear divisibility sequence of integers, depending
on the 3 integer parameters P1, P2 and Q.
Substituting x = α and y = β in (18) we obtain the generating function∑

n≥1

Wn(α, β)z
n =

z(1−Qz2)
1− P1z + (P2 + 2Q)z2 − P1Qz3 +Q2z4

. (22)
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This is the same as (5), the generating function for Williams and Guy's 3-
parameter divisibility sequence. Thus, we have established the following result:
Williams and Guy's fourth-order linear divisibility sequenceWn =Wn(P1, P2, Q),
with integer parameters P1, P2 and Q, is given by the formula

Wn =
tn(α,Q)− tn(β,Q)

α− β
, n ≥ 1,

where

α+ β = P1

αβ = P2

and where tn(x,Q) denotes the monic bivariate Chebyshev polynomial of the
�rst kind with parameter Q.
The recurrence equation for the sequence Wn follows from (19)

Wn = P1W − (P2 + 2Q)Wn−2 + P1QWn−3 −Q2Wn−4, n ≥ 4. (23)

3. The 2x2 matrix approach. There is a well-known connection between
2x2 matrices and Lucas sequences. Let P1 and P2 be a pair of nonzero integers
and let A be a 2x2 matrix

A =

[
a b
c d

]
with trace(A) = P1 and det(A) = P2.
It is not di�cult to show that the non-diagonal elements of the matrix power
An are multiples of the Lucas sequence Un(P1, P2):

An =

[
∗ bUn(P1, P2)

cUn(P1, P2) ∗

]
. (24)

Similarly, it can be shown that the non-diagonal elements of the 2x2 matrix
tn(A, Q), Q ∈ Z, are multiples of the Williams and Guy sequenceWn(P1, P2, Q):

tn(A, Q) =

[
∗ bWn(P1, P2, Q)

cWn(P1, P2, Q) ∗

]
. (25)

Sketch proof Let X ∈ GL(2,C) be a 2x2 matrix. One shows that the 2x2
matrices tn(X) = tn(X, s) satisfy the fourth-order linear recurrence

tn(X) = trace (X)tn−1(X)−(det (X) + 2s)tn−2(X) + s.trace (X)tn−3(X)− s2tn−4(X)
(26)

The proof is an easy consequence of the Cayley-Hamilton theorem for X and the
second-order recurrence equation (14) for the bivariate Chebyshev polynomials
tn(x, s). For the choices X = A and s = Q, equation (26) has the same form
as the recurrence equation (23) for the Williams and Guy sequence Wn. Con-
sequently, each element of the array tn(A) = tn(A,Q) satisi�es the recurrence
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(23). Thus to conclude that the non-diagonal elements of tn(A) are multiples
of Wn it is only necessary to check the result for �rst few values of n.

4. Higher order divisibilty sequences. We conclude by using Chebyshev
polynomials to generalize some divisibility sequences of Lehmer and Roettger.

(a) Lehmer sequences
Let P1 and P2 be a pair of nonzero integers. Lehmer [2] extended the Lucas
sequence Un(P1, P2) to a fourth-order linear divisibilty sequence Ln(P1, P2) as
follows. Let α and β be the roots of the quadratic equation x2−

√
P1x+P2 = 0,

so that

α+ β =
√
P1

αβ = P2 . (27)

We assume α − β 6= 0, or equivalently P1 6= 4P2. The Lehmer sequence Ln =
Ln(P1, P2) is de�ned as

Ln =


αn−βn

α−β n odd

αn−βn

α2−β2 n even

(28)

Ln is an integer linear divisibility sequence of order 4.
Using the bivariate Chebyshev polynomials tn(x, s) in place of monomials in

(28) leads to the Chebyshev analog L̃n = L̃n(P1, P2, Q) of Lehmer's sequence
de�ned as

L̃n =


tn(α,Q)−tn(β,Q)

α−β n odd

tn(α,Q)−tn(β,Q)
α2−β2 n even

(29)

Here Q is an integer parameter. It is not di�cult to show that the sequence L̃n
is an integer divisibility sequence. By a generating function calculation we �nd
the sequence L̃n satis�es a linear recurrence of order 8.

(b) Roettger's cubic generalization of the Lucas sequence Un.
Roettger [5, Chapter 3] has made a detailed study of a 3-parameter family
Cn(P1, P2, P3) of integer linear divisibility sequences of order 6 de�ned as follows.
Let P1, P2 and P3 be integers, and let α, β, γ be the zeros of x

3−P1x
2+P2x−P3.

Then Roettger's sequence Cn = Cn(P1, P2, P3) is given by

Cn =

(
αn − βn

α− β

)(
βn − γn

β − γ

)(
γn − αn

γ − α

)
. (30)

.
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Let Q be an integer. We de�ne the Chebyshev analog C̃n = C̃n(P1, P2, P3, Q)
of Roettger's sequence by

C̃n =

(
tn(α,Q)− tn(β,Q)

α− β

)(
tn(β,Q)− tn(γ,Q)

β − γ

)(
tn(γ,Q)− tn(α,Q)

γ − α

)
(31)

It is not di�cult to show that the sequence C̃n is an integer divisibility sequence.
As an example, let P1 = −2, P2 = 2, P3 = −1 and Q = 1, so the associated cubic
is x3+2x2+2x+1 with zeros α = −1, β = (−1+

√
−3)/2 and γ = (−1−

√
−3)/2.

The sequence C̃n begins [1,−3,−21, 195, 244,−2835, 463, 34125,−68229,−363072, ...].
By calculating the generating function of the sequence we �nd C̃n satis�es a lin-
ear recurrence of order 24.
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