login
A091964
Number of left factors of peakless Motzkin paths of length n.
7
1, 2, 4, 9, 21, 50, 121, 296, 730, 1812, 4521, 11328, 28485, 71844, 181674, 460443, 1169283, 2974574, 7578937, 19337489, 49401526, 126350742, 323495259, 829033334, 2126454271, 5458711430, 14023219126, 36049991901, 92734505565
OFFSET
0,2
COMMENTS
Number of paths from (0,0) to the line x=n, consisting of steps u=(1,1), h=(1,0), d=(1,-1), that never go below the x-axis and a u step is never followed by a d step.
a(n) is also the number of peakless Motzkin paths of length n in which the (1,0)-steps at level 0 come in 2 colors. Example: a(4)=21 because, denoting u=(1,1), h=(1,0), and d=(1,-1), we have 2^4 = 16 paths of shape hhhh, 2 paths of shape huhd, 2 paths of shape uhdh, and 1 path of shape uhhd. - Emeric Deutsch, May 03 2011
Equals diagonal sums of triangle A124428. - Paul D. Hanna, Oct 31 2006
LINKS
Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Enumerative Aspects, in International Conference on Language and Automata Theory and Applications, S. Klein, C. Martín-Vide, D. Shapira (eds), Springer, Cham, pp 195-206, 2018.
Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
Ivo L. Hofacker, Christian M. Reidys, and Peter F. Stadler, Symmetric circular matchings and RNA folding. Discr. Math., 312:100-112, 2012. See Prop. 5, C_2^{1}(z).
Asamoah Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.
FORMULA
G.f.: 2/(1 - 3*z + z^2 + sqrt(1 - 2*z - z^2 - 2*z^3 + z^4)).
a(n) = Sum_{k=0..n} C(n-floor(k/2), floor((k+1)/2)) * C(n-floor((k+1)/2), floor(k/2)). - Paul D. Hanna, Mar 24 2005
a(n) = Sum_{k=0..n} C(floor((n+k)/2),k)*C(floor((n+k+1)/2),k). - Paul D. Hanna, Oct 31 2006
G.f.: 1/(1-x-x/(1-x^2/(1-x/(1-x^2/(1-x/(1-x^2/(1-... (continued fraction). - Paul Barry, Jun 30 2009
D-finite with recurrence (n+1)*a(n) + 2*(-n-1)*a(n-1) + (-n+1)*a(n-2) + 2*(-n+3)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ (3+sqrt(5))^n / (sqrt(7*sqrt(5)-15) * sqrt(Pi*n) * 2^(n-1/2)). - Vaclav Kotesovec, Feb 12 2014
Equivalently, a(n) ~ phi^(2*n + 2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
EXAMPLE
a(2)=4 because we have hh, hu, uh and uu.
MATHEMATICA
CoefficientList[Series[2/(1-3*x+x^2+Sqrt[1-2*x-x^2-2*x^3+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n-k\2, (k+1)\2)*binomial(n-(k+1)\2, k\2)) \\ Paul D. Hanna, Mar 24 2005
(PARI) a(n)=sum(k=0, n, binomial((n+k)\2, k)*binomial((n+k+1)\2, k)) \\ Paul D. Hanna, Oct 31 2006
(Magma) [(&+[Binomial(Floor((n+k)/2), k)*Binomial(Floor((n+k+1)/2), k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 26 2019
(Sage) [sum(binomial(floor((n+k)/2), k)*binomial(floor((n+k+1)/2), k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 13 2004
STATUS
approved