login
A091346
Binomial convolution of A069321(n), where A069321(0)=0, with the sequence of all 1's alternating in sign.
10
0, 1, 3, 19, 135, 1171, 11823, 136459, 1771815, 25561891, 405658143, 7022891899, 131714587095, 2660335742611, 57570797744463, 1328913670495339, 32592691757283975, 846383665814211331, 23200396829832102783
OFFSET
0,3
COMMENTS
Let M(p, n) denote the n-th central moment of the geometric distribution p(1-p)^x. The sums of the polynomial coefficients of M(p, n)*p^n, ( {}, {1, -1}, {2, -3, 1}, {9, -18, 10, -1}, {44, -110, 90, -25}, ... ), are zero and the sum of their absolute values is 2*a(n). - Federico Provvedi, Sep 09 2020
LINKS
FORMULA
a(n) = Sum_{k=0..n}(C(n, k)*(-1)^(n-k)*Sum_{i=1..k}(i!*i*Stirling2(k, i))).
E.g.f.: ((exp(x)-1)/(2-exp(x))^2)*exp(-x).
a(n) = (A000670(n+1)+(-1)^(n+1))/4. - Vladeta Jovovic, Jan 17 2005
G.f.: x/(1+x)/Q(0), where Q(k) = 1 - x*(3*k+4) - 2*x^2*(k+1)*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n) ~ n! * n / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Nov 27 2017
a(n) = (1/2) * (-1)^n * Phi(2, -n-1, 2), where Phi(z, s, a) is the Lerch transcendantal function. - Federico Provvedi, Sep 04 2020
a(n ) = (-1)^n * (PolyLog(-1 - n, 2) - 2) / 8. - Peter Luschny, Nov 09 2020
MATHEMATICA
Table[Sum[Binomial[n, k](-1)^(n-k)Sum[i!i StirlingS2[k, i], {i, 1, k}], {k, 0, n}], {n, 0, 20}]
Table[(-1)^n LerchPhi[2, -n-1, 2]/2, {n, 0, 20}] (* Federico Provvedi, Sep 04 2020 *)
a[n_] := (-1)^n (PolyLog[-1 - n, 2] - 2) / 8;
Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 09 2020 *)
a[n_] := (-1)^n HurwitzLerchPhi[2, -n-1, 2] / 2;
Table[a[n], {n, 0, 20}] (* Federico Provvedi, Nov 11 2020 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*(-1)^(n-k)*sum(i=1, k, i!*i*stirling(k, i, 2))); \\ Michel Marcus, Jun 25 2019
CROSSREFS
Cf. A083410.
Sequence in context: A369627 A074567 A332621 * A305550 A035086 A215852
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 02 2004
STATUS
approved