login
A081120
Number of integral solutions to Mordell's equation y^2 = x^3 - n.
31
1, 2, 0, 4, 0, 0, 4, 1, 0, 0, 4, 0, 2, 0, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 1, 6, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 2, 0, 0, 0, 2, 2, 0, 6, 4, 2, 0, 0, 0, 4, 2, 4, 2, 0, 0, 0, 4, 2, 0, 4, 1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 4, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 6
OFFSET
1,2
COMMENTS
Mordell's equation has a finite number of integral solutions for all nonzero n.
Gebel, Pethö, and Zimmer (1998) computed the solutions for |n| <= 10^4. Bennett and Ghadermarzi (2015) extended this bound to |n| <= 10^7.
Sequence A081121 gives n for which there are no integral solutions. See A081119 for the number of integral solutions to y^2 = x^3 + n.
From Jianing Song, Aug 24 2022: (Start)
If A060951(n) = 0 (namely the elliptic curve y^2 = x^3 - n has rank 0), then:
- a(n) = 2 if n is of the form 432*t^6;
- a(n) = 1 if n is a cube;
- a(n) = 0 otherwise.
This follows from the complete description of the torsion group of y^2 = x^3 + n, using O to denote the point at infinity (see Exercise 10.19 of Chapter X of Silverman's Arithmetic of elliptic curves):
- If n = t^6 is a sixth power, then the torsion group consists of O, (2*t^2,+-3*t^3), (0,+-t^3), and (-t^2, 0).
- If n = t^2 is not a sixth power, then the torsion group consists of O and (0,+-t).
- If n = t^3 is not a sixth power, then the torsion group consists of O and (-t,0).
- If n is of the form -432*t^6, then the torsion group consists of O and (12*t^2,+-36*t^3).
- In all the other cases, the torsion group is trivial.
So a torsion point on y^2 = x^3 + n other than O is an integral point. If y^2 = x^3 + n has rank 0, then all the integral points on y^2 = x^3 + n are exactly the torsion points other than O.
Note that this result implies particularly that a(n) = a(n*t^6) for all t if A060951(n) = 0: the elliptic curve y^2 = x^3 - n*t^6 can be written as (y/t^3)^2 = (x/t^2)^3 - n, so it has the same Mordell-Weil group (hence the same rank and isomorphic torsion group) as y^2 = x^3 - n. (End)
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..10000 [There were errors in the previous b-file, which had 10000 terms contributed by T. D. Noe and based on the work of J. Gebel.]
M. A. Bennett and A. Ghadermarzi, Mordell's equation: a classical approach. LMS J. Compute. Math. 18 (2015): 633-646. doi:10.1112/S1461157015000182 arXiv:1311.7077
J. Gebel, A. Pethö, and H. G. Zimmer, On Mordell's equation, Compositio Mathematica. 110:3 (1998): 335-367.
J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
Joseph H. Silverman, The Arithmetic of Elliptic Curves.
Eric Weisstein's World of Mathematics, Mordell Curve.
Wikipedia, Mordell curve.
EXAMPLE
a(4)=4 refers to (x,y) = (2,+-2) and (5,+-11).
MATHEMATICA
(* This naive approach gives correct results up to n=1000 *) xmax[_] = 10^4; Do[ xmax[n] = 10^5, {n, {366, 775, 999}}]; Do[ xmax[n] = 10^6, {n, {207, 307, 847}}]; f[n_] := (x = Floor[n^(1/3)] - 1; s = {}; While[ x <= xmax[n], x++; y2 = x^3 - n; If[y2 >= 0, y = Sqrt[y2]; If[ IntegerQ[y], AppendTo[s, y]]]]; s); a[n_] := (fn = f[n]; If[fn == {}, 0, 2 Length[fn] - If[ First[fn] == 0, 1, 0]]); Table[ an = a[n]; Print["a[", n, "] = ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Mar 06 2012 *)
CROSSREFS
Cf. A081119, A081121. See A134109 for another version.
Sequence in context: A123565 A258701 A246160 * A200038 A249093 A102392
KEYWORD
nice,nonn
AUTHOR
T. D. Noe, Mar 06 2003
EXTENSIONS
Edited by Max Alekseyev, Feb 06 2021
STATUS
approved