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Let p = lor 7 (mod 8) be a prime. From elementary number theory we
know that 2 is a quadratic residue modulo p, that is, there exists an integer k,
1 < k < p—1, such that k? = 2 (mod p). By Hensel’s lemma, k lifts to a p-adic
integer a(k) = k + aip + azp* +---, 0 < a; < p — 1, such that a(k)? = 2 in
the ring of p-adic integers Z,. In these notes we show that a(k) is equal to the

k
p-adic limit as n — oo of the integer sequence {QTPn <2> }, where {T,(x)} is

the sequence of Chebyshev polynomials of the first kind. We give similar results
for the p-adic square roots of 3.

1. Chebyshev polynomials

For information on Chebyshev polynomials see, for example, [Rivlin]. The
classical Chebyshev polynomials of the first kind T, (z) satisfy the second-
order linear recurrence T,,(z) = 22T, _1(z) — T,,—2(x) with the starting values
To(x) =1 and T;(z) = . We define the scaled Chebyshev polynomials of the

first kind by Tn(x) =2T, g . Both the Chebyshev polynomials and the

scaled Chebyshev polynomials have integer coefficients.

There is an explicit expansion

(n/2] n (n ; k) 2" [n> 1] (1)

Thus Tn(x), n > 1, is a monic polynomial and for integer k& and prime p we
have

T, (k) = k (mod p) (2)
by Fermat’s little theorem.

Proposition 1. For integer k£ and prime p, the sequence {Tn(kz) in > 1}
satisfies the congruences

Tpr(k) = Tpr-1(k) (mod p")  [r>1]. (3)

Proof. Recall that an integer sequence {a(n)} satisfies the Gauss congruences
if
a(mp”) =a(mp™™") (mod p") (4)



for all primes p and all positive integers m and r. A necessary and sufficient
condition for a sequence {a(n)} to satisfy the Gauss congruences is that the
series expansion of
tTL
ex a(n)—
p | an) -

n>1

has integer coeflicients [Carlitz].

The ordinary generating function for the Chebyshev polynomials T, is

ZT()t" 1—tx
()t = ——————.
1— 2tz +t2

n>0

Hence

t" 1
o1 —2tr +t
and therefore
S (o) < tog( 1
et TR T T2 )

Thus, for integer k, the power series expansion with respect to the variable ¢ of

1
1 — kt+¢2

- tn
exp Z Tn(k)ﬁ
n>1
has integer coeflicients. It follows from Carlitz’s result that the Gauss
congruences (4) hold for the sequence {Tn(k) in > 1} . Congruence (3) is
simply the particular case m = 1.0

An immediate consequence of Proposition 1 is that the integer sequence
{Tpn (k) :n> 1} is a Cauchy sequence in the complete metric space of p-adic

integers Z,. Denote the limit of this Cauchy sequence by «(k) (we suppress
the dependence of a(k) on the prime p);

a(k) =limit_ {n — oo} Tpn (k).

It follows from Proposition 1 that for n > 1,

Tpn (k) = T, (k) (mod p)
k (mod p)

by (2). Letting n — oo yields
a(k) =k (mod p). (5)



Proposition 2. For p an odd prime, the polynomial Tp(x) — x of degree p
splits into linear factors over Z,, :

p—1

Tp(z) —z =[] (« —a(k). (6)

k=0

Proof. The Chebyshev polynomials satisfy the composition identity [Rivlin]
T, (Tm(x)) =Tum (.CE)

One easily checks that the scaled Chebyshev polynomials also satisfy the same
composition identity

In particular, for odd prime p and integer k,

Ty (Tp (K)) = Tpos (). (7)

Let n — oo in (7). Since polynomials are continuous functions on Z, we obtain

Ty (a(k)) = a(k) (8)

Thus each p-adic integer a(k), k € Z, is a root of ’Tp(x) —z. Now by (5), the
p-adic integers «(0), a(1), ... ,a(p — 1) are distinct. We conclude that the
polynomial Tj,(x) — « of degree p splits into linear factors over Z,, as

p—1

Tp(x) —z =[] (z - alk). (9)

k=0

O

Using this result we can use the Chebyshev polynomials to find some p-adic
square roots.

p-adic square roots of 2.

Let p be a prime with p = 1or 7 (mod 8) (these are precisely the odd primes p
such that 22 — 2 = 0 has a solution mod p: see |A001132). Then x? — 2 divides

the polynomial Tp(x) — z in the ring Z [z].


https://oeis.org/A001132

Proof. Observe first that ’Tp (\/5) = +/2. This easily follows from the fact

V2 T nm
that T, 5= T, | cos 1 = cos e by a well-known property of

Chebyshev polynomials. Since T‘p(m) — x is a monic polynomial of degree
p > 3 we can find an integral polynomial m(z) and integers a and b such that

rI“p(ac) —z =m(x)(2% — 2) + ax + b. Setting z = v/2 yields av/2 + b = 0 and
hence a = b = 0. Thus 22 — 2 is a factor of the polynomial T, (z) —x in Z [z] .O

For example, in the case p = 7, the polynomial T7(x) — z factorises in Z [z] as
x(x? — 1)(2? — 2)(2® — 4) leading to the factorisation of 2% — 2 in the ring
Zr [z] as

2 =2 = (z—a(3)) (z — a)),
where a(k) = limit_{n — oo} Lz~ (k). The 7-adic integers a(3) and «(4) are
recorded in the OEIS as [A051277 and [A290558l

In addition, we have the factorisations in Z7 [z] of the quadratics
22 —1=(z —a(1))(z - a6))

and
2?2 —4=(z—a?)(z—a5).

from which we find that a(1) =1 and «(6) = —1 in the ring of 7-adic integers
Z7 and «(2) = 2 and a(5) = —2 in Z-.

p-adic square roots of 3.

Let p be a prime with p = 1or 11mod (12). See|A097933. Then x? — 3 divides
the polynomial T, (z) — x in the ring Z [z].

Proof. The proof is exactly similar to that given above. In order to show that
~ 3
T, (\/3) = /3 we use the fact that T,, <\2[> =T, <cos (g)) =

nm
cos | —|.O
6

Thus, for prime p of the form 12k + 1, the quadratic 22 — 3 factors over Z, as
(x — a(k))(x — a(p — k)), where now 0 < k < p — 1 satisfies k* — 3 =
0 (mod p) . For example, in the case p = 13, the polynomial 22 — 3 factors in
the ring Zy3 [z] as

22 =3 = (2 —a4))(z—a9))

where a(k) = limit_{n — oo} Ty3 (k). The 13-adic integers a(4) and «(9)
are recorded in the OEIS as|A322087| and |A322088.


https://oeis.org/A051277
https://oeis.org/A290558
https://oeis.org/A097933
https://oeis.org/A322087
https://oeis.org/A322088

We finish with a conjecture: for positive integer k, the sequence of poly-
nomials {Tkn (x)—x:n> 1} is a divisibility sequence; that is, if n divides m

then Tjn (z) — z divides Tym () — 2 in the polynomial ring Z[z].
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