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1 INTRODUCTION

The Parallel Linear Algebra Software for Multicore Architectures (PLASMA) numerical library is a
dense linear algebra package at the forefront of multicore computing. PLASMA has been a response
to the advent of multicore processors, proclaimed in the prominent article by Sutter (2005). At that
time, it became apparent that both LAPACK1 (Anderson et al. 1999) and ScaLAPACK2 (Blackford
et al. 1997) were ill suited for efficient multicore execution. Initial work focused on efficient mul-
tithreading of standard dense linear algebra algorithms (LU with partial pivoting, Cholesky, QR)
using the canonical, column-major, data layout of LAPACK (Kurzak and Dongarra 2006). The debut
of the STI Cell processor in 2006 pushed the developments in new directions.

The most influential aspect of the STI Cell was the memory architecture based on software con-
trolled caches. This motivated tiling of the input matrices for efficient communication between
the main memory and the caches. The memory architecture, and its high internal bandwidth, pro-
moted systolic algorithms with high degrees of pipelining. At the same time, the 14× performance
advantage of single precision over double precision, in the original Cell design, stimulated the de-
velopment of mixed precision algorithms. Notable papers from that era highlighted tiling, sched-
uling, and mixed precision iterative refinement (Buttari et al. 2007; Gustavson et al. 2012; Kurzak
et al. 2008; Kurzak and Dongarra 2007, 2009; Langou et al. 2006). All these artifacts influenced the
design of the PLASMA library in one form or another.

Seminal to PLASMA developments was also the idea of superscalar scheduling, which also
gained initial traction as a solution for the Cell processor (Bellens et al. 2006). The CellSs system
from the Barcelona Supercomputer Center served as the initial inspiration for the development
of the QUARK scheduler and its subsequent adoption in PLASMA alongside Pthreads-based rou-
tines (Kurzak et al. 2013).

Before PLASMA managed to get significant traction with the user community, GPUs entered the
mainstream of HPC, and the MAGMA library (Agullo et al. 2009) became the focal point of dense
linear algebra developments at UTK. Due to the differences between GPUs and multicore proces-
sors, the design of MAGMA differs significantly from that of PLASMA. Nevertheless, throughout
its existence, PLASMA has served as a tremendous research vehicle for the development of new
algorithms and scheduling techniques.

Eventually, adoption of superscalar scheduling in the OpenMP standard motivated the retire-
ment of QUARK in favor of OpenMP, as well as retirement of the Pthreads routines. This transition
was decided after our successful first experiments with selected functions using the OpenMP tasks
summarized in YarKhan et al. (2016).

This article describes the final design of the OpenMP version of PLASMA, and assesses perfor-
mance on a variety of current multicore hardware configurations for a large set of routines. The
most recent version, PLASMA 17,3 offers an extensive collection of optimized routines for solving
linear systems of equations and least-squares problems.

PLASMA is designed to deliver high performance from a system with multiple sockets of
multicore processors, an objective achieved by combining state of the art solutions in parallel
algorithms, scheduling, and software engineering. In particular, PLASMA is built around the
following three concepts.

Tile Matrix Layout. PLASMA utilizes a tile-based storage approach. The matrix is subdivided into
square blocks, called tiles, of relatively small size, with each tile occupying a continuous memory
region. Tiles are loaded to the cache memory efficiently with little risk of eviction while being

1http://www.netlib.org/lapack.
2http://www.netlib.org/scalapack.
3https://bitbucket.org/icl/plasma.
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Table 1. An Example of the Naming Conventions
for Matrix Matrix Multiply (�gemm)

Real Complex

64 bit (double) dgemm zgemm
32 bit (single) sgemm cgemm

processed. The use of the tile layout minimizes conflict cache misses, translation lookaside buffer
(TLB) misses, and false sharing, and maximizes potential for prefetching. PLASMA contains par-
allel and cache efficient routines for converting between the conventional column-major and the
tile layouts. PLASMA currently stores both versions of the matrices, so it has larger memory re-
quirements than LAPACK.

Tile Algorithms. PLASMA is based on algorithms redesigned to work on tiles, which maximize
data reuse in the cache levels of multicore systems. Tiles are loaded to the cache and processed
completely before being transferred back to the main memory. Operations on small tiles create
fine grained parallelism providing enough work to keep a large number of cores occupied. Initial
work on tile algorithms was published in Agullo et al. (2009), Buttari et al. (2009), and a recent
overview for the development of tile algorithms can be found in Abdelfattah et al. (2016).

Dynamic Scheduling. PLASMA relies on concurrent runtime scheduling of sequential tasks. Run-
time scheduling is based on the idea of assigning work to cores based on the availability of data for
processing at any given point in time, and thus is also sometimes called data-driven scheduling.
The concept is related closely to the idea of expressing computation through a task graph, often
referred to as the Directed Acyclic Graph (DAG), and the flexibility of exploring the DAG at run-
time. This is in direct opposition to the fork-and-join scheduling, where artificial synchronization
points expose serial sections of the code and multiple cores are idle while sequential processing
takes place. Currently, PLASMA relies on OpenMP for dynamic, task-based, scheduling. Compar-
ison of the two runtimes for PLASMA was presented in YarKhan et al. (2016) showing that the
more general-purpose tasks of OpenMP are able to provide the same performance as the more
specialized QUARK. PLASMA makes use of tasks with dependencies and priorities, therefore a
compiler supporting these features of the OpenMP 4.5 standard is required.

The asynchronous execution of the sequential tasks generally makes very efficient use of the
hardware, leading to compact traces throughout the majority of the runtime. Traces typically be-
come sparse only at the very beginning or end of the algorithm, where algorithms do not expose
enough parallelism and communication costs may dominate.

2 ALGORITHMS IN PLASMA

2.1 Structure of PLASMA

PLASMA closely follows the structuring of functionality found in the LAPACK and BLAS li-
braries (Dongarra et al. 1990a, 1990b, 1988a, 1988b; Lawson et al. 1979). Let us take the example
of matrix-matrix multiply in double real precision; the well-known dgemm routine. Four different
versions are provided for most subroutines, related to different data precisions and distinguished
by the leading letter; see Table 1. We use � as a generic symbol for any of these precisions.

The PLASMA routine stack is depicted in Figure 1. Two different levels of functions are exposed
to the user. The top level function, plasma_dgemm, is a parallel analog of the dgemm from BLAS;
see the listing in Figure 2. Note that this is rather different from the implementation in the well
known PBLAS library4 for distributed memory architectures. During the execution of this function,

4http://www.netlib.org/scalapack/pblas_qref.html.
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Fig. 1. Overview of PLASMA structure with key parts of the OpenMP implementation. User-level routines
are in the box.

Fig. 2. An example of the plasma_dgemm top-level function. Only the master thread executes the code
in the parallel block and then creates and enqueues sequential tasks. The plasma_omp_zge2desc and
plasma_omp_zdesc2ge serve for translating a matrix from LAPACK to tile layout of the PLASMA matrix
descriptor and vice versa.

a parallel section of OpenMP is opened by #pragma omp parallel. This is where a number of
OpenMP threads are spawned, as specified by the OMP_NUM_THREADS environment variable. All of
the code within this block is executed by the master thread only; note the #pragma omp master
directive in Figure 2. Tasks are generated by the master thread, inside the function calls within

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.
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Fig. 3. An example of the second-level function plasma_omp_dgemm. The code is executed only by the master
thread.

the parallel region, and are executed by all the available threads in an asynchronous manner. The
master thread proceeds to the end of the parallel region, where it joins the working threads in
executing the tasks it has produced. The end of the parallel block acts as a synchronization point,
and the execution proceeds beyond this point only after all the tasks have been completed and
OpenMP threads closed.

The second level functions in this example are plasma_omp_zge2desc, plasma_omp_dgemm, and
plasma_omp_zdesc2ge. The plasma_omp_zge2desc and plasma_omp_zdesc2ge functions serve
for translation of the data layout between LAPACK column-major and tile storage; see Section 2.8.
The main function here is plasma_omp_dgemm, which is also exposed to the user, and its simplified
body is shown in Figure 3. For our chosen dgemm example, this function contains just one call to
an internal routine with a tile algorithm, i.e., plasma_pdgemm; however, multiple algorithms may
be combined on this level. Combining multiple algorithms in this way allows their execution to
overlap in an asynchronous manner. This overlap of algorithms can significantly reduce the overall
execution time for these combined functions, and it is one of the main strengths of PLASMA.
This is also the primary reason for exposing the second level of PLASMA functions, which an
advanced user can fuse in a custom order inside a user-defined OpenMP parallel region. This
interface also allows an advanced user to have fine control over the number of OpenMP threads
and their placement. For example, one can run a PLASMA algorithm on a prescribed number of
threads specified at the #pragma omp parallel clause by the num_threads() keyword.

The heart of PLASMA, a tile-based algorithm, is implemented inside the plasma_pdgemm func-
tion; see Figure 4. Inside this function, which is still executed only by the master thread, loops over
matrix tiles appear and functions that process tiles are called. These functions, also called compu-

tational kernels, are part of the COREBLAS library, which forms a self-standing part of PLASMA.
In the dgemm example, the only computational kernel involved is the core_omp_dgemm function,

see Figure 5. An OpenMP task with data dependencies is generated inside this function by the
master thread and enqueued into the OpenMP runtime. From the body of the task, a call to the
core_dgemm function (Figure 6) is made. In this example the task consists of calling a sequential
version of the dgemm routine from the CBLAS library (i.e., a C wrapper of BLAS), involving three
tiles. In general, the sequential kernels in PLASMA map to simple calls to BLAS routines, calls
to LAPACK routines, or custom implementations derived specifically for tile algorithms (e.g. in
the case of the QR factorization). The reason for separating the core_omp_dgemm function, which
creates the task, from the core_dgemm, which implements the kernel is allowing the same kernel to
be used from different runtime systems, and even from outside of PLASMA (e.g., by the DPLASMA
library (Bosilca et al. 2010a, 2010b, 2011, 2012)5).

5http://icl.cs.utk.edu/dplasma.
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Fig. 4. Skeleton of the tile matrix matrix multiply plasma_pdgemm. The mt and nt are numbers of rows
and columns of tiles of a matrix stored in the tile layout. The macros A(m, n), B(m, n), and
C(m, n) at the top expand to the plasma_tile_addr function, which returns the address of the
first entry of the tile on the mth tile-row and in the nth tile-column of the corresponding matrix. The
plasma_tile_mview and plasma_tile_nview functions return the number of rows and columns in a lo-
cal tile. The plasma_tile_mmain function returns the leading dimension of the tile, which can be different
from m if the matrix descriptor is a submatrix (called “view”) of another matrix descriptor without a deep
data copy.

2.2 Parallel BLAS

PLASMA contains a full set of routines from the Level 3 BLAS; see Table 2. BLAS routines in
PLASMA are parallelized by tiling. Their implementations are mostly straightforward loop nests,
and individual tasks are essentially calls to sequential BLAS. The listing in Figure 4 has already
shown the simplified tile matrix matrix multiplication (plasma_pdgemm routine).

Parallel BLAS routines in PLASMA are algorithmically equivalent to their reference Netlib
implementations.6

2.3 Parallel Norms

PLASMA contains a set of routines for computing matrix norms, specifically the max, one, in-

finity, and Frobenius norms. PLASMA employs tiling for increased parallelism within the norm
computations. While being mostly memory bound, PLASMA norm routines still benefit from

6http://www.netlib.org/blas.
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Fig. 5. An example of the definition of the sequential core_omp_dgemm task. The OpenMP task consists of a
call to sequential core_dgemm routine. Some parameters have been omitted for brevity.

Fig. 6. An example of the definition of the sequential core_dgemm kernel. In this example, the function just
calls a sequential BLAS dgemm routine. Some parameters have been omitted for brevity.

Table 2. Level 3 BLAS Routines

Name Description

�gemm matrix matrix multiply
�hemm Hermitian matrix matrix multiply
�her2k Hermitian rank-2k update to a matrix
�herk Hermitian rank-k update to a matrix
�symm symmetric matrix matrix multiply
�syr2k symmetric rank-2k update to a matrix
�syrk symmetric rank-k update to a matrix
�trmm triangular matrix matrix multiply
�trsm triangular solve with multiple right-hand sides

multithreading, as usually a single core cannot saturate the memory bandwidth. Table 3 lists all
the norm routines implemented in PLASMA, and Table 4 lists all the types of norms supported.

An example of the tile version of the function computing the one norm of a general matrix is
provided in Figure 7. In this routine, the vector of column sums is first computed for each tile. Then
the partial results are combined in a final reduction step. In the infinity norm routine, the same

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.
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Table 3. Matrix Norm Routines

Name Description

�lange norm of a (general) matrix
�lanhe norm of a Hermitian matrix
�lansy norm of a symmetric matrix
�lantr norm of a triangular or trapezoidal matrix

Table 4. Matrix Norm Types

Name Description Definition

PlasmaMaxNorm max norm—maximum absolute value | |A| |max = max
1≤i≤m,1≤j≤n

|ai j |

PlasmaOneNorm one norm—maximum column sum | |A| |1 = max
1≤j≤n

m∑

i=1

|ai j |

PlasmaInfNorm infinity norm—maximum row sum | |A| |∞ = max
1≤i≤m

n∑

j=1

|ai j |

PlasmaFrobeniusNorm Frobenius norm—square root of sum of squares | |A| |F = ��
�

m∑

i=1

n∑

j=1

|ai j |2��
�

1/2

Fig. 7. Example of the routine for norm of a general matrix plasma_pdlange. Only the one-norm branch
is kept in the listing. The #pragma omp taskwait is a necessary synchronization and the master thread
waits for completion of all the enqueued tasks before proceeding to the final accumulation. The work and
workspace arrays contain memory preallocated by the user that is used by the subroutines for intermediate
storage. The listing has been simplified for brevity.

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.
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Table 5. Linear Systems Routines

Name Description

�gesv linear system solve
�getrf triangular factorization
�getrs linear system solve (previously factored)
[z|c] hesv Hermitian linear system solve
[z|c] hetrf Hermitian triangular factorization
[z|c] hetrs Hermitian linear system solve (previously factored)
�posv positive definite linear system solve
�potrf positive definite triangular factorization
�potrs positive definite linear system solve (previously factored)
[d|s] sysv symmetric linear system solve
[d|s] sytrf symmetric triangular factorization
[d|s] sytrs symmetric linear system solve (previously factored)

approach is applied row-wise. In the Frobenius norm routine, the sum of squares is computed for
each tile, then the partial results are combined, and then the square root is taken. The Frobenius

norm follows the LAPACK approach of scaling the results along the way, to avoid unnecessary un-
derflow and overflow (see the LAPACK �lassq routine for details). In general, computing partial
sums should be beneficial, rather than detrimental, to the numerical stability of the norm compu-
tations. Tiling has no effect on the max norm, as the operation is order invariant.

In Figure 7, the core_omp_dlange kernel is just a simple call to the sequential dlange function
from LAPACK, which computes the matrix norm of the tile. The core_omp_dlange_aux kernel is
a custom kernel computing the row or column sums of the tile into a vector without finding their
maxima.

In addition, PLASMA contains the [dz|sc|d|s]amax routine, which computes the max norm for
each column of a matrix, and returns the result as a vector. This routine is needed for checking the
convergence of the solution in the iterative refinement process of the mixed precision solvers; see
Section 2.5.

2.4 Linear Systems

PLASMA contains a set of routines for solving linear systems of equations, both full and band.
Routines for solving general systems of equations rely on the LU factorization with partial (row)
pivoting, routines for solving symmetric positive definite (SPD) systems rely on the Cholesky fac-
torization, and routines for solving symmetric (not necessarily positive definite) systems rely on
the LDLT factorization by Aasen’s algorithm (Aasen 1971).

Dense. Table 5 lists all the linear systems routines implemented in PLASMA. Like LAPACK,
PLASMA provides a routine for solving a system of linear equations, as well as a routine for only
factoring the matrix, and a routine for solving a system using a previously factored matrix. This
allows for a matrix to be factorized once and reusing the result for repeatedly solving different
right-hand sides.

Band. Table 6 lists all the band linear solvers that PLASMA implements. PLASMA’s nonsym-
metric band linear solver is based on a band version of the LU factorization, while for solving an
SPD band system of linear equations, it uses a band version of the Cholesky factorization.

To maintain the numerical stability, our band LU routine performs partial (row) pivoting.
When the pivoting is applied to the previous columns of L, it could completely destroy its band

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.
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Table 6. Band Linear Systems Routines

Name Description

�gbsv band linear system solve
�gbtrf band triangular factorization
�gbtrs band linear system solve (previously factored)
�pbsv band positive definite linear system solve
�pbtrf band positive definite triangular factorization
�pbtrs band positive definite linear system solve (previously factored)

structure. To avoid these fills, LAPACK only applies the pivoting to the remaining columns. How-
ever, PLASMA’s band LU routine relies on the PLASMA’s LU panel factorization routine that ex-
plicitly applies the pivots to the previous columns within the panel. Hence, though PLASMA re-
turns the LU factors in the LAPACK’s band matrix format, to store these potential fills, its leading
dimension must accommodate the additional nd − 1 entries on the bottom, where nd is the tile
size.

2.4.1 Cholesky Factorization. The Cholesky factorization is a straightforward algorithm to be
written in the tile-oriented fashion (Buttari et al. 2009; Haidar et al. 2011), and Figure 8 shows the
algorithm used in PLASMA. Apart from using the core_omp_dgemm kernel from Figure 5, it uses
the core_omp_dpotrf kernel for Cholesky factorization of a tile by calling the LAPACK dpotrf
function, the core_omp_dtrsm function for solving a system with a triangular matrix, and the
core_omp_dsyrk for a rank-k update of a symmetric matrix.

The Cholesky factorization is the basis for solving linear systems of equations, where coefficients
form a symmetric positive definite (SPD) matrix. It is part of the plasma_omp_�posv routine (Al-
gorithm 1), in which the individual stages are overlapped. A call to the plasma_�potrf routine
should also precede a call to the plasma_�potrs routine, which can be called repeatedly for new
right-hand sides, and uses the Cholesky factors as input. While this version based on the top-level
PLASMA interfaces would not be overlapped, doing the same with the second-level interfaces
of plasma_omp_�potrf and plasma_omp_�potrs allows a user to benefit from the overlapping.
Cholesky factorization is also the basis for computing the inverse of an SPD matrix; see Section 2.6.

ALGORITHM 1: Cholesky-based solution of AX = B (plasma_omp_dposv)

Data: A, B
Result: X
A = LLT Cholesky factorization of matrix A, plasma_pdpotrf;

LY = B forward solve, plasma_pdtrsm;

LTX = Y backward solve, plasma_pdtrsm;

2.4.2 LU Factorization. The critical component of the LU factorization is the step of factoring a
panel, which in PLASMA is a column of tiles. This operation is on the critical path of the algorithm
and has to be optimized to the fullest. At the same time, a naive implementation, such as the�getf2
routine in LAPACK, is memory bound.

The current implementation of the LU panel factorization in PLASMA is a result of convergence
of multiple different research efforts, specifically the work on Parallel Cache Assignment (PCA) by
Castaldo and Whaley (2010), and the work on parallel recursive panel factorization by Dongarra
et al. (2014). Also, the survey by Donfack et al. (2015) provides a good overview of different imple-
mentations of the LU factorization.

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.
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Fig. 8. Algorithm for the Cholesky factorization plasma_pdpotrf. Only the branch for storing the upper
triangle of the matrix is shown. The listing has been simplified for brevity.

The panel factorization is shown in Figure 9. It relies on internal blocking and persistent assign-
ment of tiles to threads. Unlike past implementations, it is not recursive, as plain recursion proved
inferior to blocking. Memory residency provides cache reuse for the factorization of sub-panels,
while blocking provides some level of compute intensity for the sub-tile update operations. The
result is an implementation that is not memory bound and scales well with the number of cores.

Priorities on tasks serve as hint for the OpenMP runtime to schedule the tasks on the critical
path, namely the panel factorization, the update of the subsequent block column, and their nested
tasks, as soon as their dependencies are satisfied.

The complete LU factorization, including the panel factorization, and the updates to the trailing
submatrix, is multithreaded differently than other operations in PLASMA. Due to some operations
affecting entire columns of tiles, data-dependent tasks are created for column operations, not tile
operations, i.e., dependency tracking is resolved at the granularity of columns, not individual tiles.
To allow transition between the tile-oriented algorithms and the column-oriented LU, dummy
tasks have been introduced. These tasks do not perform any useful work, and their only purpose
is inserting data dependencies of the column on all its tiles and vice versa. This translation of data

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.
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Fig. 9. Implementation of the LU panel factorization based on nested tasks with priorities. The
plasma_desc_view function creates a descriptor for a submatrix, using the original memory of the parent
matrix. The ipiv array stores the indices of rows for permutation due to pivoting.

dependency seems needed due to the lack of multi-dependencies in OpenMP, which would allow
a loop over addresses in the depend clause. An example of dummy tasks inserted in front of the
panel factorization is shown in Figure 10.

Nested tasks are created within each panel factorization, and internally synchronized using
thread barriers. Similarly, nested tasks are created within each column of �gemm updates, and
synchronized with the #pragma omp taskwait clause, before exiting the parent task. Waiting

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.
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Fig. 10. An example of dummy tasks introduced for creating dependency of a panel starting at address A(k,
k) on all its tiles A(m, k).

for completion of the nested tasks is necessary for correct dependency-tracking at the column
granularity.

The LU factorization is the basis for routines for solving systems of linear equations. It is part
of the plasma_omp_�gesv routine (Algorithm 2), in which the individual stages are overlapped. A
call to the plasma_dgetrf routine should also precede a call to the plasma_dgetrs routine, which
can be called repeatedly for new right-hand sides, and uses the LU factors as input.

ALGORITHM 2: LU-based solution of AX = B (plasma_omp_dgesv)

Data: A, B
Result: X
PA = LU LU factorization of matrix A, plasma_pdgetrf;

B̃ = PB row permutation of B, plasma_pdgeswp;

LY = B̃ forward solve, plasma_pdtrsm;

UX = Y backward solve, plasma_pdtrsm;

2.4.3 LDLT Factorization. To solve a symmetric indefinite linear system, PLASMA first reduces
the symmetric matrix into a band form by the tiled Aasen’s algorithm (Aasen 1971; Ballard et al.
2014), see also Higham (2002) for its analysis. This is different from the blocked Aasen’s algo-
rithm (Rozložník et al. 2011) implemented in LAPACK, and the bound on the backward error de-
pends linearly on the tile size. At each step, the algorithm first updates the panel in a left-looking
fashion. To exploit the limited parallelism for updating each tile of the panel, PLASMA applies a
parallel reduction and accumulates a set of independent updates into a user-supplied workspace.
How much parallelism the algorithm can exploit depends on the number of tiles in the panel and
the amount of the workspace provided by the user. Once the update is completed, the panel is
factorized using the LU panel factorization routine. Hence, the algorithm follows the task depen-
dencies by columns in the nested fashion, as described in the previous section.

Then, in the second stage of the algorithm, the band matrix is factored using the PLASMA band
LU factorization routine. Since there is no explicit global synchronization, a task to factor the band
matrix can be started as soon as all the data dependencies are satisfied. This allows the execution
of these two algorithms to be merged, improving the parallel performance, especially since both
algorithms have limited amount of parallelism that can be exploited. A more detailed description
and performance analysis of the algorithm can be found in Yamazaki et al. (2018).

2.5 Mixed Precision

PLASMA implements mixed precision routines for the solution of general linear systems of
equations and SPD systems of equations. PLASMA mixed precision routines are algorithmically
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Table 7. Mixed Precision Routines

Name Description

[zc|ds]gesv linear system solve
[zc|ds]posv positive definite linear system solve

equivalent to their LAPACK counterparts. Table 7 lists all the mixed precision routines imple-
mented in PLASMA.

The algorithms are based on factorizing the matrix in reduced precision (32 bits) and recov-
ering the full precision accuracy (64 bits) in the process of iterative refinement. The approach
is motivated by the performance advantage of single precision arithmetic over double precision
arithmetic, which is typically twofold. If the input matrix is well conditioned, and the full precision
can be recovered in a few steps of refinements, then double precision solution can be delivered al-
most at the speed of computing the single precision solution (Baboulin et al. 2009; Buttari et al.
2007; Langou et al. 2006).

Algorithm 3 summarizes the iterative refinement method in mixed precision for SPD matrices
implemented in PLASMA. Dotted quantities Ȧ, L̇, ẋ , ẏ, ḃ, ḋ, ṙ denote values in single precision.
Adding and removing a dot to a vector corresponds to conversion from double to single preci-
sion and vice versa. In order for the algorithm to calculate a residual, a copy of the matrix in full
precision needs to be preserved. This incurs additional memory requirements.

In case the refinement procedure does not converge (i.e., backward error stopping criterion is
not met) after 30 iterations, the routine falls back to solving the system with a standard algorithm
in full precision.

ALGORITHM 3: Iterative refinement procedure for solution of linear system Ax = b with an SPD matrix A

in mixed precision (plasma_dsposv)

Data: A,b
Result: x
Ȧ = L̇ L̇T Factorize Ȧ using Cholesky algorithm, plasma_pspotrf;

L̇ ẏ = ḃ Solve linear system, plasma_pstrsm;

L̇T ẋ = ẏ Solve linear system, plasma_pstrsm;

r = b −Ax Compute residual, plasma_pdsymm;

if | |r | |max ≥ ||x | |max | |A| |∞ ε
√
n then

x1 = x Save computed solution;

repeat

L̇ ẏ = ṙi Solve linear system for vector ẏ, plasma_pstrsm;

L̇T ḋi = ẏ Solve linear system for vector ḋ , plasma_pstrsm;

xi+1 = xi + di Update computed solution, plasma_pdgeadd;

ri+1 = b −Axi+1 Compute residual, plasma_pdsymm;

until | |ri+1 | |max < | |xi+1 | |max | |A| |∞ ε
√
n;

end

2.6 Matrix Inversion

PLASMA contains a set of routines for computing the inverse of a matrix. Routines for inverting
general matrices rely on the LU factorization with partial (row) pivoting, whilst routines for in-
verting SPD matrices rely on the Cholesky factorization; see Algorithms 4 and 5. The inversion
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Table 8. Matrix Inversion Routines

Name Description

�getri matrix inversion (LU factorization as input)
�potri positive definite matrix inversion (Cholesky factorization as input)
�geinv matrix inversion (includes the LU factorization)
�poinv positive definite matrix inversion (includes the Cholesky factorization)

routines are split into three phases: the factorization of the matrix into triangular factors, the in-
version of a triangular factor, and the reconstruction of the inverse from its factor.

In general, matrix inversion should not be used for solving linear systems of equations for sta-
bility reasons. Instead, matrix factorizations such as LU, LLT , or LDLT should be used, followed by
forward and backward substitution. Yet, finding the explicit inverse of a matrix is still required in
some applications, such as inverting the covariance matrix in statistics.

Table 8 lists all the matrix inversion routines implemented in PLASMA. The poinv function
uses the Cholesky factorization (potrf) for finding the inverse of a positive definite matrix (Algo-
rithm 4). This function was introduced to PLASMA to allow overlapping between the three phases
of the inversion using the asynchronous tasks. By contrast, the potri function does not include the
Cholesky factorization, and it expects a Cholesky factor as input. Similarly, the new geinv func-
tion for computing the inverse of a general matrix computes the LU factorization (Algorithm 5),
whereas the traditional getri function expects LU factors as input.

Merging the individual stages is known to lead to high-performance implementations (Agullo
et al. 2010; Bouwmeester and Langou 2010), and it provides very compact traces.

ALGORITHM 4: Cholesky-based computation of A−1 (plasma_omp_dpoinv)

Data: A
Result: A−1

A = LLT Cholesky factorization of matrix A, plasma_pdpotrf;

L−1 inverse of L, plasma_pdtrtri;

A−1 = (LT )−1L−1 multiplication of the triangular parts, plasma_pdlauum;

ALGORITHM 5: LU-based computation of A−1 (plasma_omp_dgeinv)

Data: A
Result: A−1

PA = LU LU factorization of matrix A, plasma_pdgetrf;

U −1 inverse of U , plasma_pdtrtri;

Ã−1L = U −1 find A−1 as the solution to a linear system of equations, plasma_pdgetri_aux;

A−1 = Ã−1P column permutation of Ã−1, plasma_pdgeswp;

2.7 Least Squares

PLASMA contains routines for solving overdetermined and underdetermined systems of lin-
ear equations. It uses QR and LQ factorizations, based on block Householder transformations.
PLASMA implementations are rather different from LAPACK. While LAPACK reduces the in-
put matrices by columns, PLASMA does so by tiles. This approach produces algorithms with
higher levels of parallelism and excellent scheduling properties (Buttari et al. 2008, 2009).

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.



16:16 J. Dongarra et al.

Table 9. Least-squares Routines

Name Description

�gelqf LQ factorization
�gelqs minimum norm solve using LQ factorization
�gels overdetermined or underdetermined linear systems solve
�geqrf QR factorization
�geqrs least squares solve using QR factorization
�[un|or]glq generate the Q matrix from LQ factorization
�[un|or]gqr generate the Q matrix from QR factorization
�[un|or]mlq apply the Q matrix from LQ factorization
�[un|or]mqr apply the Q matrix from QR factorization

Generally, PLASMA QR and LQ algorithms show exceptional strong scaling, while being somewhat
handicapped in asymptotic performance, due to reliance on more complex serial kernels than simple
calls to BLAS.

Table 9 lists all the PLASMA routines related to solving overdetermined and under-determined
systems of linear equations. This includes routines for QR and LQ factorizations, generation of the
Q matrices, as well as application of the orthogonal transformations without explicit generation
of the Q matrices.

PLASMA routines have the same numerical stability as LAPACK, but are not algorithmically
equivalent to LAPACK. This is because PLASMA reduces the input matrices by tiles, not by full
columns, and generates sets of tile reflectors in the process. This makes no difference to the user,
as long as PLASMA functions are used for operations involving the reflectors, such as generation
of the Q matrix or application of the transformations to another matrix.

PLASMA includes support for QR factorization of tall and skinny matrices, for which the number
of rowsm is much larger than the number of columns n. In this scenario, algorithmic parallelism is
increased by concurrent elimination of blocks within a panel, and proceeds according to a reduc-
tion tree until all tiles below the diagonal are eliminated. The approach was described in Demmel
et al. (2008), and extended, e.g., in Dongarra et al. (2013). Tree-based Householder reductions were
recently used for singular value decomposition (SVD) in Faverge et al. (2016).

Since different trees may be beneficial in different circumstances, PLASMA 17 has introduced
several trees and a new flexible implementation of this functionality. A tree is first traversed and
the elimination kernels are registered into a 1D array. After this, tasks are created following the
order given by this array. This approach permits a quick reuse of a certain tree across all QR and
LQ routines as well as the possibility to apply Householder reflectors to form an action of Q or its
transpose.

The QR and LQ algorithms are the basis for solving systems with rectangular matrices—
the least-squares problems for m ≥ n and the underdetermined systems for m < n. The struc-
ture of the plasma_omp_dgels routine is in Algorithm 6. In addition, the QR and LQ factor-
izations are performed either by the standard algorithms in plasma_pdgeqrf (see Figure 11)
and plasma_pdgelqf or by their versions based on the reduction tree plasma_pdgeqrf_tree
and plasma_pdgelqf_tree. QR algorithm requires custom kernels core_omp_dtsqrt and
core_omp_dtsmqt for QR factorization and QT application of a matrix composed from two tiles.
Although the tile QR factorization (core_omp_dgeqrt) and QT application (core_omp_dormqr)
correspond to their LAPACK counterparts, inner blocking with block size ib is performed inside
these kernels and nonblocked implementations from LAPACK are called.
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ALGORITHM 6: Solving overdetermined and underdetermined systems of equations AX = B

(plasma_omp_dgels)

Data: A,B
Result: X
if m ≥ n then

A = QR QR factorization of A, plasma_pdgeqrf;

Y = QT B application of QT to B, plasma_pdormqr;

RX = Y finding the least-squares solution X , plasma_pdtrsm;

else

A = LQ LQ factorization of A, plasma_pdgelqf;

LY = B solve the linear system for Y , plasma_pdtrsm;

X = QTY find the minimum norm solution to the underdetermined system, plasma_pdormlq;

end

2.8 Other Implementation Details

PLASMA is written in C, with interfaces for Fortran provided via automatic code generation during
compilation of the library. In particular, PLASMA is shipped with a Python script, which parses
the C header files, and generates a Fortran module with the interface. The bindings are based on
features provided by the Fortran 2003 standard, most importantly the iso_c_binding intrinsic
module. PLASMA includes several Fortran examples of using the top-level as well as the second-
level functions.

The four different precisions (Table 1) are generated by another Python script. This takes the
prototypes in the double complex precision and produces the other precisions by textual substitu-
tions in the source codes.

Additional details on functionality implemented in PLASMA can be found in Abalenkovs et al.
(2017a).

3 PERFORMANCE EVALUATION

In this section, we present a comprehensive set of benchmarks for the PLASMA routines previously
described. Performance is reported for each PLASMA routine on three distinct platforms within
a shared memory environment. In each case, we utilize the maximum available number of cores
and examine performance across a range of matrix sizes. We use real double precision variables
throughout, with the exception of the mixed precision routines, which combine real double and
real single precision variables. A major focus of this study is to asses the performance of state-
of-the-art tile-based algorithms, in comparison to block-column-based algorithms, such as those
present in the LAPACK library.

3.1 Hardware, Library and Compiler Details

Three recent shared-memory multicore platforms have been selected for this study, namely: a two-
socket compute node based on Intel Xeon processors (Haswell generation, 20 cores), an Intel Xeon
Phi 7250 processor (Knights Landing generation, 68 cores), and a two-socket machine based on an
IBM Power 8 processor (20 cores). Details of the individual platforms are presented in Table 10.

On these three hardware platforms, we compare the performance of PLASMA to other numer-
ical libraries. In particular the Netlib LAPACK library version 3.7.0, linked with a multithreaded
optimized BLAS library, provides the baseline for performance comparisons. In the case of Intel
architectures, we also compare the performance of PLASMA against that of the Intel Math Kernel
Library (MKL). For the IBM Power 8-based system, the IBM Engineering and Scientific Subroutine
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Fig. 11. Skeleton of the standard tile QR factorization. A.mt and A.nt are numbers of rows and columns of
tiles in matrix A stored in the tile layout.

Library (ESSL) is used for comparison instead. It should be noted that PLASMA is also linked with
these libraries and relies on their sequential implementations of BLAS.

For most tests square matrices of growing size are used; however, non-square matrices are also
examined where appropriate to the algorithm, such as in the case of QR factorization. For each test,
three runs were performed at each matrix size, using randomly generated matrices. The highest
performance obtained from these three runs is reported in the plots.

A crucial parameter within PLASMA is the size of the square tile; i.e., the nb parameter. Lower
values will typically increase the parallelism of the algorithm, while higher values allow more effi-
cient utilization of arithmetic units. Consequently PLASMA performance is examined for several
tile sizes, with the highest performing tile size reported. The optimal tile size tends to grow slightly
as the matrix size is increased. A quick way for users to determine an nb parameter suitable for
their architecture and matrix size is to run the PLASMA tester on a range of tile sizes, and then
set the one that leads to the best performance through a call to the plasma_set function.
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Table 10. Platforms Selected for the Benchmarks

Label Hardware overview Compilers and libraries

Haswell

• 2 × Intel Xeon CPU E5-2650 v3, 2.30GHz
• 2 × 10 = 20 cores
• 32GB DRAM
• theoretical peak performance 736Gflop/s

• GNU Compiler Collection (GCC) 7.1.0
• Intel C Compiler 16.0.3
•MKL 17.2

Phi

• Intel Xeon Phi 7250
• 68 cores
• 16GB MCDRAM
• theoretical peak performance 3046Gflop/s
• quadrant cluster mode
• flat memory mode

• GNU Compiler Collection (GCC) 7.0.1
• Intel C Compiler 16.0.3
•MKL 17.2

POWER8

• 2 × IBM POWER8, 3.5GHz
• 2 × 10 = 20 cores
• 256GB DRAM
• theoretical peak performance 560Gflop/s

• GNU Compiler Collection (GCC) 6.3.1
• IBM XL 20161123
• IBM ESSL 5.5.0

On both the Haswell and Phi platforms, PLASMA and MKL are linked using the GNU C compiler,
and utilize the GNU OpenMP (gomp) runtime library. Due to issues with using this combination
for LAPACK linked with MKL BLAS, we present results for this combination using the Intel C
compiler, and the Intel OpenMP (iomp) runtime library.

On the Haswell platform tests are performed using the following options:
OMP_NUM_THREADS=20 OMP_PROC_BIND=true OMP_MAX_TASK_PRIORITY=100 numactl --inter-
leave=all

For the Phi platform tests are run using:
OMP_NUM_THREADS=68 OMP_PROC_BIND=true OMP_MAX_TASK_PRIORITY=100 numactl -m=1
where the last flag has led to using the fast MCDRAM memory for storing the matrices. The Phi
processor was in the flat memory mode, allowing the allocation of large matrices in the MCDRAM
memory. This had a significant effect on performance compared to allocating matrices in RAM.
The quadrant cluster mode was used, although this did not seem to have a significant impact on
performance. The effect of the different memory modes of Phi on performance for linear algebra
has been studied in more detail in Haidar et al. (2017).

POWER8 runs use the following:
OMP_NUM_THREADS=20 OMP_PROC_BIND=true OMP_PLACES="{0}:20:8" OMP_MAX_TASK_
PRIORITY=100
where the OMP_PLACES environment variable maps each OpenMP thread to one physical CPU core,
rather than simply taking the first 20 available logical cores.

We present an execution trace for the Cholesky-based matrix inversion. Many more traces can
be found in Abalenkovs et al. (2017b).

3.2 Parallel BLAS

PLASMA contains a full parallel implementation of the Level 3 BLAS routines. However, this sec-
tion focuses only on the performance results of gemm and trsm. This is motivated by the fact
that all level 3 BLAS routines, except trsm, can be viewed as a specialized implementation of
gemm (Kågström et al. 1998).

We present the performance of plasma_dgemm and plasma_dtrsm routines on three different
architectures, and compare it with the performance of the vendor-provided optimized implemen-
tations. Unlike LAPACK routines we do not report the performance of the Netlib reference imple-
mentation of BLAS, as it is fully sequential.
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Figures 12 and 13 show the performance results on Haswell. For the dgemm routine, MKL per-
forms about 15% better than PLASMA throughout the range of matrix sizes. This result suggests
that the current plasma_dgemm routine may have potential room for performance improvement.
For the plasma_dtrsm routine, PLASMA provides performance similar to MKL, while offering a
more smooth and predictable performance scaling.

The results on the Phi architecture (Figures 14 and 15) demonstrate that MKL is making sig-
nificantly better use of the 68 available cores. For moderate-sized matrices; i.e., in the 2,000 to
10,000 range, a performance gap of around 500Gflop/s can be observed for dgemm. For dtrsm the
performance gap is consistently around 200Gflop/s. These results suggest a significant deficit in
efficiency for the PLASMA BLAS routines, in comparison to multithreaded MKL, despite the fact
that PLASMA calls sequential MKL BLAS for processing individual tiles.

On the IBM POWER8 platform, PLASMA and the vendor optimized multithreaded library, ESSL,
exhibit comparable results for both dgemm and dtrsm. As shown in Figures 16 and 17, both rou-
tines reach in excess of 450Gflop/s, representing around 85% of the theoretical peak performance
(560Gflop/s). This result demonstrates the capability of PLASMA to efficiently exploit all 20 cores
of the POWER8 machine. Again, PLASMA tasks call sequential dgemm from ESSL to process in-
dividual tiles.

The optimal tile size parameter (nb) was either 336 or 560 on Haswell, for matrices larger than
4000. The optimal size was 560 on Phi, and 384 on POWER8. Smaller matrices require somewhat
smaller tiles for optimal performance.

3.3 Parallel Norms

We present benchmarks for computation of the one norm, for general and symmetric matrices; i.e.,
the dlange and dlansy routines, respectively. These routines are heavily memory bound; hence,
their performance is reported in GB/s rather than Gflop/s.

Results on Haswell are summarized in Figures 18 and 19. For both general matrices (Figure 18)
and symmetric matrices (Figure 19), MKL significantly out-performs PLASMA and LAPACK. It
should be noted that the high performance of MKL was obtained only after calling the C inter-
face function without the “not a number” (NaN) checking; namely, the LAPACKE_dlange_work and
LAPACKE_dlansy_work. With LAPACKE_dlange and LAPACKE_dlansy, the performance was sig-
nificantly worse. In this benchmark, PLASMA is penalized due to the inclusion of translation to
the tile layout into the measured time, since this conversion significantly increases the number of
memory accesses required. To quantify this effect, we have also performed an experiment exclud-
ing the layout conversion from the timing. These results are denoted as “PLASMA*” (with asterisk)
in the plots. We can see that if the matrix is already in the tile layout, the norm computations can
be performed even faster than by MKL.

The results on the Phi platform are presented in Figures 20 and 21. As in the case of Haswell,
MKL significantly outperforms both PLASMA and LAPACK, with the performance differential
growing significantly with increasing matrix size. The increased parallelism of the Phi platform
does allow PLASMA to significantly out-perform LAPACK, however. We have repeated the exper-
iment excluding the layout conversion time of PLASMA also on Phi. In this scenario, MKL still
performs better for general matrices, while PLASMA outperforms MKL for symmetric ones.

Results obtained on the POWER8 platform are shown in Figures 22 and 23. For both general
and symmetric matrices, PLASMA out-performs ESSL by around 50%, and offers roughly twice
the performance of LAPACK.

The dominant optimal tile size parameter (nb) was found to be 560 on Haswell, 1024 on Phi, and
384 on POWER8.
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Fig. 12. Performance of dgemm on Haswell. Fig. 13. Performance of dtrsm on Haswell.

Fig. 14. Performance of dgemm on Phi. Fig. 15. Performance of dtrsm on Phi.

Fig. 16. Performance of dgemm on POWER8. Fig. 17. Performance of dtrsm on POWER8.

3.4 Linear Systems

The PLASMA library provides a range of routines for the factorization of matrices. In this section,
we examine performance for the PLASMA implementations of LU factorization (plasma_dgetrf),
Cholesky factorization (plasma_dpotrf), and LDLT factorization (plasma_dsytrf) with dense
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Fig. 18. Performance of dlange on Haswell. Fig. 19. Performance of dlansy on Haswell.

Fig. 20. Performance of dlange on Phi. Fig. 21. Performance of dlansy on Phi.

Fig. 22. Performance of dlange on POWER8. Fig. 23. Performance of dlansy on POWER8.

matrices. We also consider performance for the band-matrix versions of LU and Cholesky factor-
ization; i.e., (plasma_dgbtrf) and (plasma_dpbtrf). The performance of QR factorization routines
for solving least-squares problems are presented in Section 3.7.

We consider first the performance of PLASMA on the Haswell platform. For LU factorization
(Figure 24), MKL shows a moderate performance gain over PLASMA throughout the range of
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matrix sizes, at around 15%. PLASMA does significantly outperform LAPACK, however, showing
around a 50% improvement. This improvement is partially due to the parallel panel factorization
of PLASMA, in contrast to the standard LU algorithm of LAPACK, which introduces parallelism
only through parallel BLAS used for the trailing matrix update.

Figure 25 shows the performance of Cholesky factorization. Here PLASMA and MKL offer very
similar performance, with MKL slightly faster for small matrices, and PLASMA slightly ahead for
mid-sized matrices. Both MKL and PLASMA again offer significantly improved performance over
LAPACK.

Results for the LDLT factorization are shown in Figure 26. While LU and Cholesky factorization
shows a high performance up to 600Gflop/s, which is around 80% of the theoretical peak perfor-
mance (see Table 10), none of the dsytrf implementations achieve even 50% of the theoretical
peak. The bottlenecks to providing a scalable implementation of the symmetric indefinite matrix
have been discussed in Section 2.4.3, the main issue being the need for symmetric pivoting. Nev-
ertheless, PLASMA is able to outperform MKL and LAPACK by a significant margin, for moderate
to large matrices.

Results on the Phi platform are shown in Figures 27–29. Overall trends are very similar to
Haswell; in particular, for the LU and Cholesky algorithms. In the case of LDLT factorization,
PLASMA outperforms MKL by a more significant margin than on Haswell, offering more than
double the performance on larger matrices.

On the IBM POWER8 architecture, both the ESSL and PLASMA implementations of LU fac-
torization substantially outperform the LAPACK equivalent, as showed in Figure 30. For smaller
matrices ESSL demonstrates good performance relative to PLASMA; however, it stagnates early
whilst PLASMA performance continues to grow with increasing matrix sizes. The POWER8 ex-
periments for Cholesky factorization: Figure 31 shows ESSL and PLASMA achieving similar per-
formance for smaller matrices, while PLASMA pulls ahead by around 25% for moderately large
matrices.

The results for LDLT factorization in Figure 32 are more complex. For matrices of size ranging
from 1,000 to 5,000, the three curves completely overlap, which suggests that either for such small
matrices there is not much room for parallelism exploitable by the LDLT algorithm, or ESSL and
PLASMA failed to achieve a better optimization than LAPACK. The latter is more true for ESSL
that did not succeed in showing any performance gain over LAPACK for all the matrix sizes con-
sidered. However, the performance of PLASMA’s LDLT , increased almost linearly, with the matrix
size.

To examine the performance of band routines, we consider the dgbtrf and dpbtrf functions,
which employ LU and Cholesky factorization, respectively, to solve the band systems. In each case,
we consider a matrix with a 10 percent band occupancy; that is, the bandwidth is equal to one tenth
of the matrix size.

Figures 33 and 34 show the performance of the band routines on the Haswell platform. For
Cholesky factorization (Figure 34), we see a very similar performance profile across all three
platforms; however, with LU factorization (Figure 33) PLASMA pulls ahead of MKL and LAPACK
for large matrix sizes, showing up to a 100% increase in performance over MKL. The improved
relative performance of PLASMA in this case appears to be a result of the multi-threaded panel
factorization.

Performance on the Xeon Phi is shown in Figures 35 and 36. Here performance with LU is similar
between PLASMA and MKL; PLASMA offers better performance on large matrix sizes, with MKL
ahead for small matrices. For Cholesky all three routines provide similar performance with smaller
matrices, while PLASMA offers increasingly superior performance as the matrix size grows.
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Fig. 24. Performance of dgetrf on Haswell. Fig. 25. Performance of dpotrf on Haswell.

Fig. 26. Performance of dsytrf on Haswell.

Fig. 27. Performance of dgetrf on Phi. Fig. 28. Performance of dpotrf on Phi.

The results on POWER8, given in Figures 37 and 38, show significant performance improve-
ments for PLASMA over LAPACK and ESSL throughout the range of matrix sizes on both routines.
The difference is particularly evident for LU factorization, where PLASMA performance grows to
more than double that of the other routines at large matrix sizes.
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Fig. 29. Performance of dsytrf on Phi.

Fig. 30. Performance of dgetrf on POWER8. Fig. 31. Performance of dpotrf on POWER8.

Fig. 32. Performance of dsytrf on POWER8.

It is important to note that, for band routines in general, performance will scale much more
strongly with bandwidth than with matrix size. Increasing the matrix size whilst using a fixed
bandwidth of modest size will typically provide a flat performance profile, as memory bandwidth
becomes saturated before the floating point capacity is exhausted.

ACM Transactions on Mathematical Software, Vol. 45, No. 2, Article 16. Publication date: April 2019.



16:26 J. Dongarra et al.

Fig. 33. Performance of dgbtrf on Haswell. Fig. 34. Performance of dpbtrf on Haswell.

Fig. 35. Performance of dgbtrf on Phi. Fig. 36. Performance of dpbtrf on Phi.

Fig. 37. Performance of dgbtrf on POWER8. Fig. 38. Performance of dpbtrf on POWER8.

The dominant optimal tile size parameter (nb) for Cholesky factorization of a dense matrix was
336 on Haswell, 448 on Phi, and 384 on POWER8. For LU factorization, it was 228 on Haswell, 448
on Phi and 336 on POWER8. Performance of the LU factorization was found to be sensitive to the
maximum number of threads for panel factorization (mtpf), which was set to 8 on Haswell, 20 on
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Phi, and 4 on POWER8. The inner blocking parameter (ib) was set to 16 on Haswell, 40 on Phi,
and 32 on POWER8. Finally, for the LDLT factorization, the dominant optimal nb was found to be
192 on Haswell, 352 on Phi, and 128 on POWER8.

For band Cholesky factorization, the dominant nb was 224 on Haswell and Phi, and 128 on
POWER8. For band LU factorization, the dominant optimal nb was 168 on Haswell, 224 on Phi,
and 128 on POWER8. The maximal number of threads for panel factorization (mtpf) was set to 4
on Haswell and POWER8, and to 8 on Phi.

3.5 Mixed Precision

Performance of the mixed precision iterative refinement based on the LU factorization is pre-
sented in Figures 39, 41, and 43. At the time of writing, an issue is present with the coupling of
PLASMA to the gomp runtime library version 7. This issue is related to the assignment of pri-
orities for nested OpenMP tasks; an approach employed by the LU factorization in PLASMA.
To circumvent this issue task priorities are not enabled for the presented results; i.e., setting
OMP_MAX_TASK_PRIORITY=0. Even with this limitation PLASMA is able to achieve around 25%
higher performance than MKL, and more than double the performance of LAPACK on Haswell.
On Phi the difference is even more significant; PLASMA achieves around double the performance
of MKL, and around quadruple the performance of LAPACK. On POWER8 the performance of
PLASMA is comparable with that of ESSL. Here PLASMA offers slightly better performance for
smaller matrices, with ESSL slightly ahead for larger matrices. Both libraries provide roughly dou-
ble the performance of LAPACK.

Performance results of the mixed precision iterative refinement routine dsposv, based on
Cholesky factorization, are presented in Figures 40, 42, and 44. The number of right-hand side
vectors is set to one in all experiments. On the Haswell platform, PLASMA achieves significantly
higher performance than MKL for large matrix sizes. On Phi, the PLASMA routine provides a
dramatic four- to fivefold improvement compared to its MKL counterpart, for moderate to large
matrix sizes.

The dominant optimal tile size for the plasma_dsgesv routine on Haswell was 384, with inner
blocking ib = 40, and 4 threads used for panel factorization. The same setup was used on POWER8.
On Phi, tile size was 352, the inner blocking ib = 64, and 8 threads were assigned to panel factoriza-
tion. Optimal tile sizes for the plasma_dsposv routine were more varied, while being dominated
by 480 for Haswell, 576 for Phi, and 384 for POWER8.

Figures 41 and 42 present two additional curves corresponding to conventional linear system
solutions in single and double precisions, denoted by PLASMA(S) and PLASMA(D), respectively. To
compare performance of all three variants of the linear system solution; s{ge,po}sv, d{ge,po}sv
and ds{ge,po}sv, the performance for all routines was calculated using the same formula for the
number of floating point operations.

As expected, the mixed precision routine delivers a performance curve that lies between that of
the native single and double precision results. The mixed precision performance curve lies much
closer to the single precision results in case of the �posv routine, whereas in case of �gesv, per-
formance is more comparable to that of the native double precision routine.

3.6 Matrix Inversion

The routines used to explicitly invert a matrix are described in Section 2.6. The performance results
on the various systems are collated in Figures 46–51. On the Haswell architecture (Figures 46
and 47) we see that PLASMA is more performant than MKL and LAPACK for all matrix sizes.
PLASMA is particularly effective for Cholesky inversion, where performance improvements over
MKL are mostly around 50–100%. On the Phi platform (Figures 48 and 49) the performance of
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Fig. 39. Performance of dsgesv on Haswell. Fig. 40. Performance of dsposv on Haswell.

Fig. 41. Performance of dsgesv on Phi. Fig. 42. Performance of dsposv on Phi.

Fig. 43. Performance of dsgesv on POWER8. Fig. 44. Performance of dsposv on POWER8.

PLASMA is slightly higher than MKL for dgeinv, though PLASMA is once again around twice as
fast for dpoinv. For both algorithms the performance of LAPACK is well below that of the more
heavily optimized libraries. On the POWER8 machine (Figures 50 and 51) things behave rather
differently. For dgeinv the performance of PLASMA is the best for matrices larger than around
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Fig. 45. Trace of plasma_dpoinv on Phi, matrix size 11,648, tile size 448.

5,000. The dpoinv implementation in PLASMA once again provides the fastest implementation,
though by a smaller margin than on the other platforms. Here ESSL is roughly halfway between
the performance of PLASMA and LAPACK.

In summary, for dgeinv PLASMA obtains slightly superior performance to MKL on Intel archi-
tectures and it is faster than ESSL for large matrices on the POWER8 system. However, for dpoinv,
PLASMA significantly outperforms the other implementations on all systems.

The performance benefit of the plasma_dpoinv routine stems from the fact that its tile-based
Cholesky factorization algorithm is well suited for overlapping the factorization with the subse-
quent stages (see Algorithm 4). The effect is best shown in an execution trace; see, e.g., Figure 45.
It is clear that kernels of the subsequent stages start before the end of the factorization itself, filling
the gaps of the factorization algorithm towards the end of the factorization, where this does not
generate enough parallelism itself. Unfortunately, partial pivoting prevents such a high degree of
overlap in the LU-based routine plasma_dgeinv.

The optimal tile size parameter (nb) did not tend to change much with the matrix size. For the
dgeinv routine, the dominant optimal nb was 384 for Haswell, 448 for Phi, and 256 for POWER8.
For the dpoinv implementation, the dominant nb was 544 on Haswell, 448 on Phi, and 256 on
POWER8.

3.7 Least Squares

Solving overdetermined problems in PLASMA relies on the QR factorization of the matrix (see Al-
gorithm 6). We perform the benchmarks for the QR factorization routine (plasma_dgeqrf), which
allows us to avoid dependence on the number of right-hand sides. We run PLASMA using the
standard QR algorithm, in which the plasma_pdgeqrf function (Figure 11) is called, and also with
the tree-based QR algorithm, in which the plasma_pdgeqrf_tree function is used instead. In the
charts to follow, “PLASMA” (no asterisk) refers to the standard algorithm, while “PLASMA*” (with
asterisk) refers to the tree-based one.

Results are summarized in Figures 52–57. The first experiment is monitoring the performance
of the QR factorization on square matrices of increasing dimension. In this scenario, updating
the trailing matrix provides enough parallelism to keep the cores busy. As a result, for PLASMA,
the tree-based algorithm is providing slightly lower performance than the standard algorithm on
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Fig. 46. Performance of dgeinv on Haswell. Fig. 47. Performance of dpoinv on Haswell.

Fig. 48. Performance of dgeinv on Phi. Fig. 49. Performance of dpoinv on Phi.

Fig. 50. Performance of dgeinv on POWER8. Fig. 51. Performance of dpoinv on POWER8.

all the tested platforms. This is related to the worse data locality due to the need for visiting some
tiles twice when eliminating them by the tt (triangle-on-top-of-triangle) kernels rather than by
the ts (triangle-on-top-of-square) kernels; see, e.g., Bouwmeester and Langou (2010) for related
discussion. This experiment also suits the MKL library, which is faster than PLASMA by about 15%
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Fig. 52. Performance of dgeqrf on Haswell. Fig. 53. Performance of dgeqrf on Haswell, tall
matrix.

Fig. 54. Performance of dgeqrf on Phi. Fig. 55. Performance of dgeqrf on Phi, tall
matrix.

Fig. 56. Performance of dgeqrf on POWER8. Fig. 57. Performance of dgeqrf on POWER8,
tall matrix.
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on Haswell and by more than 30% on Phi. It suits also the ESSL, which is about 10% faster than
PLASMA on POWER8. Finally, LAPACK with multithreaded BLAS provides significantly lower
performance, which is around 40% of the one by PLASMA on Haswell and Phi and around 60% for
POWER8.

The situation changes significantly if updating the trailing matrix does not provide enough
parallelism, which is the case for matrices with m >> n, also called “tall and skinny” in literature.
Our second experiment aims at performance of QR factorization for such matrices, in particular,
on a matrix with 90,000 rows, and variable number of columns. In this scenario, it is crucial to
introduce parallelism also into elimination of the columns of tiles, as it is done for the tree-based
algorithm of PLASMA. Indeed, this algorithm significantly outperforms the standard algorithm in
this regime. Nevertheless, for increasing number of matrix columns, the standard algorithm gets
enough parallelism and reaches the performance of the tree-based elimination. In our experiments,
this has happened already for 8 columns of tiles. LAPACK results follow the trend of the standard
PLASMA algorithm, not having parallelism for very skinny matrices and resembling the results
for square matrices for increasing number of columns.

A somewhat surprising performance profile was provided by MKL for this experiment. On
Haswell (Figure 53), the initial performance for matrix with 300 columns is almost as high as for
the tree-based PLASMA algorithm, suggesting that MKL also introduces some parallelism into the
panel elimination. However, the performance does not increase for larger matrices, and it got even
lower than for LAPACK for the case with 9,600 columns. On Phi, however, the performance of
MKL started as low as for the standard PLASMA algorithm, while keeping higher than it for more
columns, consistently with the square-matrix results. Performance of ESSL on POWER8 starts
between the two PLASMA algorithms, while being lower between 1,200 and 4,800 columns, and
matching them for the case with 9,600 columns.

The performance of PLASMA is not particularly sensitive to the tile size parameter (nb) on
Haswell, with most of the results obtained using nb = 288. The dependence was stronger on Phi,
with 448 and 560 being the optimal values for larger matrices. The results on POWER8 were ob-
tained with nb = 336. The ib parameter for inner blocking inside the kernels for QR factorization
has been consistently set to ib = nb/4 on Haswell and Phi, while it has been set to 64 on POWER8.

4 CONCLUSIONS

During the latest major revision of PLASMA, the library has been ported from an in-house devel-
oped runtime system; QUARK, to OpenMP tasks with dependencies. While QUARK has features
specific to the needs of a numerical library, OpenMP is a more general purpose tool. Consequently,
the transition has also led to the redesigning of some algorithms; most notably the LU factorization
code.

A comprehensive set of performance benchmarks has been performed, considering three recent
multicore shared memory architectures, namely, Haswell, Xeon Phi, and POWER8. In general,
the performance of PLASMA is comparable to the optimized vendor libraries; Intel MKL in the
case of Intel architectures, and IBM ESSL for POWER8. In addition, the LAPACK library using
multithreaded BLAS from the vendor optimized library has been also included for the comparison.

Testing shows that MKL provides higher performance for BLAS routines; especially on the Xeon
Phi platform. A significant performance difference in favour of MKL has been also observed for
matrix norm computations. However, PLASMA has proven superior to the other libraries for al-
gorithms suited to tile-oriented implementation. This includes the LDLT factorization, and QR
factorization of tall and skinny matrices, where tiling readily provides potential for increased
parallelism.
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PLASMA offers an important advantage for operations composed of several base algorithms,
such as solving a system of linear equations composed of matrix factorization and back-
substitution. While executing the corresponding algorithms in a synchronous way suffers from
lack of parallelism at the beginning and toward the end of the execution, asynchronous execution
allows the merging of these parts of the execution. An operation with a potentially large perfor-
mance advantage from such merging is computing an inverse of an SPD matrix. Thanks to the
asynchronous execution, the performance of PLASMA is typically as much as two times higher
than that of the other libraries.

PLASMA 17 currently does not contain all the functionality of the previous version. Specifically,
extending the library to eigenvalue problems and singular value decomposition is the current work
in progress.
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