[8] | 1 |
|
---|
| 2 | /*
|
---|
| 3 | *@@sourcefile tree.c:
|
---|
| 4 | * contains helper functions for maintaining 'Red-Black' balanced
|
---|
| 5 | * binary trees.
|
---|
| 6 | *
|
---|
| 7 | * Usage: All C programs; not OS/2-specific.
|
---|
| 8 | *
|
---|
| 9 | * Function prefixes (new with V0.81):
|
---|
| 10 | * -- tree* tree helper functions
|
---|
| 11 | *
|
---|
[33] | 12 | * <B>Introduction</B>
|
---|
| 13 | *
|
---|
[83] | 14 | * While linked lists have "next" and "previous" pointers (which
|
---|
| 15 | * makes them one-dimensional), trees have a two-dimensional layout:
|
---|
| 16 | * each tree node has one "parent" and two "children" which are
|
---|
| 17 | * called "left" and "right". The "left" pointer will always lead
|
---|
| 18 | * to a tree node that is "less than" its parent node, while the
|
---|
| 19 | * "right" pointer will lead to a node that is "greater than"
|
---|
| 20 | * its parent. What is considered "less" or "greater" for sorting
|
---|
| 21 | * is determined by a comparison callback to be supplied by the
|
---|
| 22 | * tree functions' caller. The "leafs" of the tree will have
|
---|
| 23 | * null left and right pointers.
|
---|
[33] | 24 | *
|
---|
[83] | 25 | * For this, the functions here use the TREE structure. The most
|
---|
| 26 | * important member here is the "ulKey" field which is used for
|
---|
| 27 | * sorting (passed to the compare callbacks). Since the tree
|
---|
| 28 | * functions do no memory allocation, the caller can easily
|
---|
| 29 | * use an extended TREE structure with additional fields as
|
---|
| 30 | * long as the first member is the TREE structure. See below.
|
---|
[56] | 31 | *
|
---|
[83] | 32 | * Each tree must have a "root" item, from which all other tree
|
---|
| 33 | * nodes can eventually be reached by following the "left" and
|
---|
| 34 | * "right" pointers. The root node is the only node whose
|
---|
| 35 | * parent is null.
|
---|
[56] | 36 | *
|
---|
[83] | 37 | * <B>Trees vs. linked lists</B>
|
---|
[56] | 38 | *
|
---|
[83] | 39 | * Compared to linked lists (as implemented by linklist.c),
|
---|
| 40 | * trees allow for much faster searching, since they are
|
---|
| 41 | * always sorted.
|
---|
[33] | 42 | *
|
---|
[83] | 43 | * Take an array of numbers, and assume you'd need to find
|
---|
| 44 | * the array node with the specified number.
|
---|
[33] | 45 | *
|
---|
[83] | 46 | * With a (sorted) linked list, this would look like:
|
---|
[33] | 47 | *
|
---|
[83] | 48 | + 4 --> 7 --> 16 --> 20 --> 37 --> 38 --> 43
|
---|
| 49 | *
|
---|
| 50 | * Searching for "43" would need 6 iterations.
|
---|
| 51 | *
|
---|
| 52 | * With a binary tree, this would instead look like:
|
---|
| 53 | *
|
---|
| 54 | + 20
|
---|
| 55 | + / \
|
---|
| 56 | + 7 38
|
---|
| 57 | + / \ / \
|
---|
| 58 | + 4 16 37 43
|
---|
| 59 | + / \ / \ / \ / \
|
---|
| 60 | *
|
---|
| 61 | * Searching for "43" would need 2 iterations only.
|
---|
| 62 | *
|
---|
| 63 | * Assuming a linked list contains N items, then searching a
|
---|
| 64 | * linked list for an item will take an average of N/2 comparisons
|
---|
| 65 | * and even N comparisons if the item cannot be found (unless
|
---|
| 66 | * you keep the list sorted, but linklist.c doesn't do this).
|
---|
| 67 | *
|
---|
| 68 | * According to "Algorithms in C", a search in a balanced
|
---|
| 69 | * "red-black" binary tree takes about lg N comparisons on
|
---|
| 70 | * average, and insertions take less than one rotation on
|
---|
| 71 | * average.
|
---|
| 72 | *
|
---|
| 73 | * Differences compared to linklist.c:
|
---|
| 74 | *
|
---|
| 75 | * -- A tree is always sorted.
|
---|
| 76 | *
|
---|
| 77 | * -- Trees are considerably slower when inserting and removing
|
---|
| 78 | * nodes because the tree has to be rebalanced every time
|
---|
| 79 | * a node changes. By contrast, trees are much faster finding
|
---|
| 80 | * nodes because the tree is always sorted.
|
---|
| 81 | *
|
---|
| 82 | * -- As opposed to a LISTNODE, the TREE structure (which
|
---|
| 83 | * represents a tree node) does not contain a data pointer,
|
---|
| 84 | * as said above. The caller must do all memory management.
|
---|
| 85 | *
|
---|
| 86 | * <B>Background</B>
|
---|
| 87 | *
|
---|
| 88 | * Now, a "red-black balanced binary tree" means the following:
|
---|
| 89 | *
|
---|
[33] | 90 | * -- We have "binary" trees. That is, there are only "left" and
|
---|
[83] | 91 | * "right" pointers. (Other algorithms allow tree nodes to
|
---|
| 92 | * have more than two children, but binary trees are usually
|
---|
| 93 | * more efficient.)
|
---|
[33] | 94 | *
|
---|
[83] | 95 | * -- The tree is always "balanced". The tree gets reordered
|
---|
| 96 | * when items are added/removed to ensure that all paths
|
---|
| 97 | * through the tree are approximately the same length.
|
---|
| 98 | * This avoids the "worst case" scenario that some paths
|
---|
| 99 | * grow terribly long while others remain short ("degenerated"
|
---|
| 100 | * trees), which can make searching very inefficient:
|
---|
[33] | 101 | *
|
---|
[83] | 102 | + 4
|
---|
| 103 | + / \
|
---|
| 104 | + 7
|
---|
| 105 | + / \
|
---|
| 106 | + 16
|
---|
| 107 | + / \
|
---|
| 108 | + 20
|
---|
| 109 | + / \
|
---|
| 110 | + 37
|
---|
| 111 | + / \
|
---|
| 112 | + 43
|
---|
| 113 | + / \
|
---|
[33] | 114 | *
|
---|
[83] | 115 | * -- Fully balanced trees can be quite expensive because on
|
---|
[85] | 116 | * every insertion or deletion, the tree nodes must be rotated.
|
---|
[83] | 117 | * By contrast, "Red-black" binary balanced trees contain
|
---|
| 118 | * an additional bit in each node which marks the node as
|
---|
| 119 | * either red or black. This bit is used only for efficient
|
---|
| 120 | * rebalancing when inserting or deleting nodes.
|
---|
[33] | 121 | *
|
---|
[83] | 122 | * I don't fully understand why this works, but if you really
|
---|
| 123 | * care, this is explained at
|
---|
| 124 | * "http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html".
|
---|
| 125 | *
|
---|
| 126 | * In other words, as opposed to regular binary trees, RB trees
|
---|
| 127 | * are not _fully_ balanced, but they are _mostly_ balanced. With
|
---|
| 128 | * respect to efficiency, RB trees are thus a good compromise:
|
---|
| 129 | *
|
---|
| 130 | * -- Completely unbalanced trees are efficient when inserting,
|
---|
| 131 | * but can have a terrible worst case when searching.
|
---|
| 132 | *
|
---|
| 133 | * -- RB trees are still acceptably efficient when inserting
|
---|
| 134 | * and quite efficient when searching.
|
---|
| 135 | * A RB tree with n internal nodes has a height of at most
|
---|
| 136 | * 2lg(n+1). Both average and worst-case search time is O(lg n).
|
---|
| 137 | *
|
---|
| 138 | * -- Fully balanced binary trees are inefficient when inserting
|
---|
| 139 | * but most efficient when searching.
|
---|
| 140 | *
|
---|
| 141 | * So as long as you are sure that trees are more efficient
|
---|
| 142 | * in your situation than a linked list in the first place, use
|
---|
| 143 | * these RB trees instead of linked lists.
|
---|
| 144 | *
|
---|
[8] | 145 | * <B>Using binary trees</B>
|
---|
| 146 | *
|
---|
[13] | 147 | * You can use any structure as elements in a tree, provided
|
---|
| 148 | * that the first member in the structure is a TREE structure
|
---|
[83] | 149 | * (i.e. it has the left, right, parent, and color members).
|
---|
| 150 | * Each TREE node has a ulKey field which is used for
|
---|
| 151 | * comparing tree nodes and thus determines the location of
|
---|
| 152 | * the node in the tree.
|
---|
[13] | 153 | *
|
---|
[83] | 154 | * The tree functions don't care what follows in each TREE
|
---|
| 155 | * node since they do not manage any memory themselves.
|
---|
[13] | 156 | * So the implementation here is slightly different from the
|
---|
| 157 | * linked lists in linklist.c, because the LISTNODE structs
|
---|
| 158 | * only have pointers to the data. By contrast, the TREE structs
|
---|
[83] | 159 | * are expected to contain the data themselves.
|
---|
[13] | 160 | *
|
---|
[8] | 161 | * Initialize the root of the tree with treeInit(). Then
|
---|
[83] | 162 | * add nodes to the tree with treeInsert() and remove nodes
|
---|
| 163 | * with treeDelete(). See below for a sample.
|
---|
[8] | 164 | *
|
---|
| 165 | * You can test whether a tree is empty by comparing its
|
---|
[83] | 166 | * root with LEAF.
|
---|
[8] | 167 | *
|
---|
[83] | 168 | * For most tree* functions, you must specify a comparison
|
---|
| 169 | * function which will always receive two "key" parameters
|
---|
| 170 | * to compare. This must be declared as
|
---|
| 171 | +
|
---|
| 172 | + int TREEENTRY fnCompare(ULONG ul1, ULONG ul2);
|
---|
[33] | 173 | *
|
---|
[83] | 174 | * This will receive two TREE.ulKey members (whose meaning
|
---|
| 175 | * is defined by your implementation) and must return
|
---|
[33] | 176 | *
|
---|
[83] | 177 | * -- something < 0: ul1 < ul2
|
---|
| 178 | * -- 0: ul1 == ul2
|
---|
| 179 | * -- something > 1: ul1 > ul2
|
---|
[33] | 180 | *
|
---|
[83] | 181 | * <B>Example</B>
|
---|
[33] | 182 | *
|
---|
[83] | 183 | * A good example where trees are efficient would be the
|
---|
| 184 | * case where you have "keyword=value" string pairs and
|
---|
| 185 | * you frequently need to search for "keyword" to find
|
---|
| 186 | * a "value". So "keyword" would be an ideal candidate for
|
---|
| 187 | * the TREE.key field.
|
---|
[54] | 188 | *
|
---|
[83] | 189 | * You'd then define your own tree nodes like this:
|
---|
[54] | 190 | *
|
---|
[83] | 191 | + typedef struct _MYTREENODE
|
---|
| 192 | + {
|
---|
| 193 | + TREE Tree; // regular tree node, which has
|
---|
| 194 | + // the ULONG "key" field; we'd
|
---|
| 195 | + // use this as a const char*
|
---|
| 196 | + // pointer to the keyword string
|
---|
| 197 | + // here come the additional fields
|
---|
| 198 | + // (whatever you need for your data)
|
---|
| 199 | + const char *pcszValue;
|
---|
| 200 | +
|
---|
| 201 | + } MYTREENODE, *PMYTREENODE;
|
---|
[33] | 202 | *
|
---|
[83] | 203 | * Initialize the tree root:
|
---|
[33] | 204 | *
|
---|
[83] | 205 | + TREE *root;
|
---|
| 206 | + treeInit(&root);
|
---|
[8] | 207 | *
|
---|
[83] | 208 | * To add a new "keyword=value" pair, do this:
|
---|
[8] | 209 | *
|
---|
[83] | 210 | + PMYTREENODE AddNode(TREE **root,
|
---|
| 211 | + const char *pcszKeyword,
|
---|
| 212 | + const char *pcszValue)
|
---|
| 213 | + {
|
---|
| 214 | + PMYTREENODE p = (PMYTREENODE)malloc(sizeof(MYTREENODE));
|
---|
| 215 | + p.Tree.ulKey = (ULONG)pcszKeyword;
|
---|
| 216 | + p.pcszValue = pcszValue;
|
---|
| 217 | + treeInsert(root, // tree's root
|
---|
| 218 | + p, // new tree node
|
---|
| 219 | + fnCompare); // comparison func
|
---|
[238] | 220 | + return p;
|
---|
[83] | 221 | + }
|
---|
[8] | 222 | *
|
---|
[83] | 223 | * Your comparison func receives two ulKey values to compare,
|
---|
| 224 | * which in this case would be the typecast string pointers:
|
---|
[8] | 225 | *
|
---|
[83] | 226 | + int TREEENTRY fnCompare(ULONG ul1, ULONG ul2)
|
---|
| 227 | + {
|
---|
[238] | 228 | + return strcmp((const char*)ul1,
|
---|
| 229 | + (const char*)ul2);
|
---|
[83] | 230 | + }
|
---|
[8] | 231 | *
|
---|
[83] | 232 | * You can then use treeFind to very quickly find a node
|
---|
| 233 | * with a specified ulKey member.
|
---|
[8] | 234 | *
|
---|
[83] | 235 | * This file was new with V0.9.5 (2000-09-29) [umoeller].
|
---|
| 236 | * With V0.9.13, all the code has been replaced with the public
|
---|
| 237 | * domain code found at http://epaperpress.com/sortsearch/index.html
|
---|
| 238 | * ("A compact guide to searching and sorting") by Thomas Niemann.
|
---|
| 239 | * The old implementation from the Standard Function Library (SFL)
|
---|
| 240 | * turned out to be buggy for large trees (more than 100 nodes).
|
---|
[8] | 241 | *
|
---|
| 242 | *@@added V0.9.5 (2000-09-29) [umoeller]
|
---|
| 243 | *@@header "helpers\tree.h"
|
---|
| 244 | */
|
---|
| 245 |
|
---|
| 246 | /*
|
---|
[83] | 247 | * Original coding by Thomas Niemann, placed in the public domain
|
---|
| 248 | * (see http://epaperpress.com/sortsearch/index.html).
|
---|
[8] | 249 | *
|
---|
[83] | 250 | * This implementation Copyright (C) 2001 Ulrich Mller.
|
---|
[14] | 251 | * This file is part of the "XWorkplace helpers" source package.
|
---|
| 252 | * This is free software; you can redistribute it and/or modify
|
---|
[8] | 253 | * it under the terms of the GNU General Public License as published
|
---|
| 254 | * by the Free Software Foundation, in version 2 as it comes in the
|
---|
| 255 | * "COPYING" file of the XWorkplace main distribution.
|
---|
| 256 | * This program is distributed in the hope that it will be useful,
|
---|
| 257 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 258 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 259 | * GNU General Public License for more details.
|
---|
| 260 | */
|
---|
| 261 |
|
---|
| 262 | /*
|
---|
| 263 | *@@category: Helpers\C helpers\Red-black balanced binary trees
|
---|
[21] | 264 | * See tree.c.
|
---|
[8] | 265 | */
|
---|
| 266 |
|
---|
| 267 | #include "setup.h"
|
---|
| 268 | #include "helpers\tree.h"
|
---|
| 269 |
|
---|
[83] | 270 | #define LEAF &sentinel // all leafs are sentinels
|
---|
[222] | 271 | STATIC TREE sentinel = { LEAF, LEAF, 0, BLACK};
|
---|
[8] | 272 |
|
---|
[83] | 273 | /*
|
---|
| 274 | A binary search tree is a red-black tree if:
|
---|
[8] | 275 |
|
---|
[83] | 276 | 1. Every node is either red or black.
|
---|
| 277 | 2. Every leaf (nil) is black.
|
---|
| 278 | 3. If a node is red, then both its children are black.
|
---|
| 279 | 4. Every simple path from a node to a descendant leaf contains the same
|
---|
| 280 | number of black nodes.
|
---|
| 281 | */
|
---|
| 282 |
|
---|
[8] | 283 | /*
|
---|
| 284 | *@@ treeInit:
|
---|
[83] | 285 | * initializes the root of a tree.
|
---|
[8] | 286 | *
|
---|
[116] | 287 | * If (plCount != NULL), *plCount is set to null also.
|
---|
| 288 | * This same plCount pointer can then be passed to
|
---|
| 289 | * treeInsert and treeDelete also to automatically
|
---|
| 290 | * maintain a tree item count.
|
---|
| 291 | *
|
---|
[113] | 292 | *@@changed V0.9.16 (2001-10-19) [umoeller]: added plCount
|
---|
[8] | 293 | */
|
---|
| 294 |
|
---|
[113] | 295 | void treeInit(TREE **root,
|
---|
| 296 | PLONG plCount) // out: tree item count, set to 0 (ptr can be NULL)
|
---|
[8] | 297 | {
|
---|
[83] | 298 | *root = LEAF;
|
---|
[113] | 299 |
|
---|
| 300 | if (plCount)
|
---|
| 301 | *plCount = 0; // V0.9.16 (2001-10-19) [umoeller]
|
---|
[8] | 302 | }
|
---|
| 303 |
|
---|
| 304 | /*
|
---|
[83] | 305 | *@@ treeCompareKeys:
|
---|
| 306 | * standard comparison func if the TREE.ulKey
|
---|
| 307 | * field really is a ULONG.
|
---|
[33] | 308 | */
|
---|
| 309 |
|
---|
[83] | 310 | int TREEENTRY treeCompareKeys(unsigned long ul1, unsigned long ul2)
|
---|
[33] | 311 | {
|
---|
[83] | 312 | if (ul1 < ul2)
|
---|
[33] | 313 | return -1;
|
---|
[196] | 314 |
|
---|
[83] | 315 | if (ul1 > ul2)
|
---|
[33] | 316 | return +1;
|
---|
[196] | 317 |
|
---|
| 318 | return 0;
|
---|
[33] | 319 | }
|
---|
| 320 |
|
---|
| 321 | /*
|
---|
[106] | 322 | *@@ treeCompareStrings:
|
---|
| 323 | * standard comparison func if the TREE.ulKey
|
---|
| 324 | * field really is a string pointer (PCSZ).
|
---|
| 325 | *
|
---|
| 326 | * This runs strcmp internally, but can handle
|
---|
| 327 | * NULL pointers without crashing.
|
---|
| 328 | *
|
---|
| 329 | *@@added V0.9.16 (2001-09-29) [umoeller]
|
---|
| 330 | */
|
---|
| 331 |
|
---|
| 332 | int TREEENTRY treeCompareStrings(unsigned long ul1, unsigned long ul2)
|
---|
| 333 | {
|
---|
[388] | 334 | const char *p1 = (const char*) ul1;
|
---|
| 335 | const char *p2 = (const char*) ul2;
|
---|
[106] | 336 |
|
---|
| 337 | if (p1 && p2)
|
---|
| 338 | {
|
---|
| 339 | int i = strcmp(p1, p2);
|
---|
[196] | 340 | if (i < 0)
|
---|
| 341 | return -1;
|
---|
| 342 | if (i > 0)
|
---|
| 343 | return +1;
|
---|
[106] | 344 | }
|
---|
| 345 | else if (p1)
|
---|
| 346 | // but p2 is NULL: p1 greater than p2 then
|
---|
[196] | 347 | return +1;
|
---|
[106] | 348 | else if (p2)
|
---|
| 349 | // but p1 is NULL: p1 less than p2 then
|
---|
[196] | 350 | return -1;
|
---|
[106] | 351 |
|
---|
| 352 | // return 0 if strcmp returned 0 above or both strings are NULL
|
---|
[196] | 353 | return 0;
|
---|
[106] | 354 | }
|
---|
| 355 |
|
---|
| 356 | /*
|
---|
[83] | 357 | *@@ rotateLeft:
|
---|
| 358 | * private function during rebalancing.
|
---|
[8] | 359 | */
|
---|
| 360 |
|
---|
[222] | 361 | STATIC void rotateLeft(TREE **root,
|
---|
[83] | 362 | TREE *x)
|
---|
[8] | 363 | {
|
---|
[196] | 364 | // rotate node x to left
|
---|
[8] | 365 |
|
---|
[83] | 366 | TREE *y = x->right;
|
---|
| 367 |
|
---|
| 368 | // establish x->right link
|
---|
| 369 | x->right = y->left;
|
---|
| 370 | if (y->left != LEAF)
|
---|
| 371 | y->left->parent = x;
|
---|
| 372 |
|
---|
| 373 | // establish y->parent link
|
---|
| 374 | if (y != LEAF)
|
---|
| 375 | y->parent = x->parent;
|
---|
[196] | 376 |
|
---|
[83] | 377 | if (x->parent)
|
---|
[8] | 378 | {
|
---|
[83] | 379 | if (x == x->parent->left)
|
---|
| 380 | x->parent->left = y;
|
---|
| 381 | else
|
---|
| 382 | x->parent->right = y;
|
---|
[8] | 383 | }
|
---|
| 384 | else
|
---|
[83] | 385 | *root = y;
|
---|
[8] | 386 |
|
---|
[83] | 387 | // link x and y
|
---|
| 388 | y->left = x;
|
---|
| 389 | if (x != LEAF)
|
---|
| 390 | x->parent = y;
|
---|
[8] | 391 | }
|
---|
| 392 |
|
---|
| 393 | /*
|
---|
[83] | 394 | *@@ rotateRight:
|
---|
| 395 | * private function during rebalancing.
|
---|
[8] | 396 | */
|
---|
| 397 |
|
---|
[222] | 398 | STATIC void rotateRight(TREE **root,
|
---|
[83] | 399 | TREE *x)
|
---|
[8] | 400 | {
|
---|
[196] | 401 | // rotate node x to right
|
---|
[8] | 402 |
|
---|
[83] | 403 | TREE *y = x->left;
|
---|
[8] | 404 |
|
---|
[83] | 405 | // establish x->left link
|
---|
| 406 | x->left = y->right;
|
---|
| 407 | if (y->right != LEAF)
|
---|
| 408 | y->right->parent = x;
|
---|
[8] | 409 |
|
---|
[83] | 410 | // establish y->parent link
|
---|
| 411 | if (y != LEAF)
|
---|
| 412 | y->parent = x->parent;
|
---|
[196] | 413 |
|
---|
[83] | 414 | if (x->parent)
|
---|
| 415 | {
|
---|
| 416 | if (x == x->parent->right)
|
---|
| 417 | x->parent->right = y;
|
---|
| 418 | else
|
---|
| 419 | x->parent->left = y;
|
---|
| 420 | }
|
---|
[8] | 421 | else
|
---|
[83] | 422 | *root = y;
|
---|
[8] | 423 |
|
---|
[83] | 424 | // link x and y
|
---|
| 425 | y->right = x;
|
---|
| 426 | if (x != LEAF)
|
---|
| 427 | x->parent = y;
|
---|
[8] | 428 | }
|
---|
| 429 |
|
---|
| 430 | /*
|
---|
[83] | 431 | *@@ insertFixup:
|
---|
| 432 | * private function during rebalancing.
|
---|
[8] | 433 | */
|
---|
| 434 |
|
---|
[222] | 435 | STATIC void insertFixup(TREE **root,
|
---|
[83] | 436 | TREE *x)
|
---|
[8] | 437 | {
|
---|
[83] | 438 | // check Red-Black properties
|
---|
| 439 | while ( x != *root
|
---|
| 440 | && x->parent->color == RED
|
---|
| 441 | )
|
---|
[8] | 442 | {
|
---|
| 443 | // we have a violation
|
---|
[83] | 444 | if (x->parent == x->parent->parent->left)
|
---|
[8] | 445 | {
|
---|
[83] | 446 | TREE *y = x->parent->parent->right;
|
---|
| 447 | if (y->color == RED)
|
---|
[8] | 448 | {
|
---|
| 449 | // uncle is RED
|
---|
[83] | 450 | x->parent->color = BLACK;
|
---|
| 451 | y->color = BLACK;
|
---|
| 452 | x->parent->parent->color = RED;
|
---|
| 453 | x = x->parent->parent;
|
---|
[8] | 454 | }
|
---|
| 455 | else
|
---|
| 456 | {
|
---|
| 457 | // uncle is BLACK
|
---|
[83] | 458 | if (x == x->parent->right)
|
---|
[8] | 459 | {
|
---|
[83] | 460 | // make x a left child
|
---|
| 461 | x = x->parent;
|
---|
| 462 | rotateLeft(root,
|
---|
| 463 | x);
|
---|
[8] | 464 | }
|
---|
| 465 |
|
---|
| 466 | // recolor and rotate
|
---|
[83] | 467 | x->parent->color = BLACK;
|
---|
| 468 | x->parent->parent->color = RED;
|
---|
| 469 | rotateRight(root,
|
---|
| 470 | x->parent->parent);
|
---|
[8] | 471 | }
|
---|
| 472 | }
|
---|
| 473 | else
|
---|
| 474 | {
|
---|
| 475 | // mirror image of above code
|
---|
[83] | 476 | TREE *y = x->parent->parent->left;
|
---|
| 477 | if (y->color == RED)
|
---|
[8] | 478 | {
|
---|
| 479 | // uncle is RED
|
---|
[83] | 480 | x->parent->color = BLACK;
|
---|
| 481 | y->color = BLACK;
|
---|
| 482 | x->parent->parent->color = RED;
|
---|
| 483 | x = x->parent->parent;
|
---|
[8] | 484 | }
|
---|
| 485 | else
|
---|
| 486 | {
|
---|
| 487 | // uncle is BLACK
|
---|
[83] | 488 | if (x == x->parent->left)
|
---|
[8] | 489 | {
|
---|
[83] | 490 | x = x->parent;
|
---|
| 491 | rotateRight(root,
|
---|
| 492 | x);
|
---|
[8] | 493 | }
|
---|
[83] | 494 | x->parent->color = BLACK;
|
---|
| 495 | x->parent->parent->color = RED;
|
---|
| 496 | rotateLeft(root,
|
---|
| 497 | x->parent->parent);
|
---|
[8] | 498 | }
|
---|
| 499 | }
|
---|
| 500 | }
|
---|
[196] | 501 |
|
---|
[83] | 502 | (*root)->color = BLACK;
|
---|
[8] | 503 | }
|
---|
| 504 |
|
---|
| 505 | /*
|
---|
[83] | 506 | *@@ treeInsert:
|
---|
| 507 | * inserts a new tree node into the specified
|
---|
| 508 | * tree, using the specified comparison function
|
---|
| 509 | * for sorting.
|
---|
[8] | 510 | *
|
---|
[83] | 511 | * "x" specifies the new tree node which must
|
---|
| 512 | * have been allocated by the caller. x->ulKey
|
---|
[116] | 513 | * must already contain the node's key (data)
|
---|
| 514 | * which the sort function can understand.
|
---|
| 515 | *
|
---|
[83] | 516 | * This function will then set the parent,
|
---|
[116] | 517 | * left, right, and color members. In addition,
|
---|
| 518 | * if (plCount != NULL), *plCount is raised by
|
---|
| 519 | * one.
|
---|
[8] | 520 | *
|
---|
[83] | 521 | * Returns 0 if no error. Might return
|
---|
| 522 | * STATUS_DUPLICATE_KEY if a node with the
|
---|
| 523 | * same ulKey already exists.
|
---|
[113] | 524 | *
|
---|
| 525 | *@@changed V0.9.16 (2001-10-19) [umoeller]: added plCount
|
---|
[8] | 526 | */
|
---|
| 527 |
|
---|
[83] | 528 | int treeInsert(TREE **root, // in: root of the tree
|
---|
[116] | 529 | PLONG plCount, // in/out: item count (ptr can be NULL)
|
---|
[83] | 530 | TREE *x, // in: new node to insert
|
---|
| 531 | FNTREE_COMPARE *pfnCompare) // in: comparison func
|
---|
[8] | 532 | {
|
---|
[83] | 533 | TREE *current,
|
---|
| 534 | *parent;
|
---|
[8] | 535 |
|
---|
[83] | 536 | unsigned long key = x->ulKey;
|
---|
[8] | 537 |
|
---|
[83] | 538 | // find future parent
|
---|
| 539 | current = *root;
|
---|
| 540 | parent = 0;
|
---|
[8] | 541 |
|
---|
[83] | 542 | while (current != LEAF)
|
---|
[8] | 543 | {
|
---|
[83] | 544 | int iResult;
|
---|
[196] | 545 | if (!(iResult = pfnCompare(key, current->ulKey)))
|
---|
[83] | 546 | return STATUS_DUPLICATE_KEY;
|
---|
[113] | 547 |
|
---|
[83] | 548 | parent = current;
|
---|
[196] | 549 | current = (iResult < 0)
|
---|
[83] | 550 | ? current->left
|
---|
| 551 | : current->right;
|
---|
[8] | 552 | }
|
---|
| 553 |
|
---|
[83] | 554 | // set up new node
|
---|
| 555 | x->parent = parent;
|
---|
| 556 | x->left = LEAF;
|
---|
| 557 | x->right = LEAF;
|
---|
| 558 | x->color = RED;
|
---|
[8] | 559 |
|
---|
[83] | 560 | // insert node in tree
|
---|
| 561 | if (parent)
|
---|
[11] | 562 | {
|
---|
[83] | 563 | if (pfnCompare(key, parent->ulKey) < 0) // (compLT(key, parent->key))
|
---|
| 564 | parent->left = x;
|
---|
[8] | 565 | else
|
---|
[83] | 566 | parent->right = x;
|
---|
[11] | 567 | }
|
---|
[8] | 568 | else
|
---|
[83] | 569 | *root = x;
|
---|
[8] | 570 |
|
---|
[83] | 571 | insertFixup(root,
|
---|
| 572 | x);
|
---|
[8] | 573 |
|
---|
[113] | 574 | if (plCount)
|
---|
| 575 | (*plCount)++; // V0.9.16 (2001-10-19) [umoeller]
|
---|
| 576 |
|
---|
[83] | 577 | return STATUS_OK;
|
---|
[8] | 578 | }
|
---|
| 579 |
|
---|
| 580 | /*
|
---|
[83] | 581 | *@@ deleteFixup:
|
---|
[8] | 582 | *
|
---|
| 583 | */
|
---|
| 584 |
|
---|
[222] | 585 | STATIC void deleteFixup(TREE **root,
|
---|
[83] | 586 | TREE *tree)
|
---|
[8] | 587 | {
|
---|
[83] | 588 | TREE *s;
|
---|
[8] | 589 |
|
---|
[83] | 590 | while ( tree != *root
|
---|
| 591 | && tree->color == BLACK
|
---|
| 592 | )
|
---|
[8] | 593 | {
|
---|
| 594 | if (tree == tree->parent->left)
|
---|
| 595 | {
|
---|
[83] | 596 | s = tree->parent->right;
|
---|
| 597 | if (s->color == RED)
|
---|
[8] | 598 | {
|
---|
[83] | 599 | s->color = BLACK;
|
---|
| 600 | tree->parent->color = RED;
|
---|
| 601 | rotateLeft(root, tree->parent);
|
---|
| 602 | s = tree->parent->right;
|
---|
[8] | 603 | }
|
---|
[83] | 604 | if ( (s->left->color == BLACK)
|
---|
| 605 | && (s->right->color == BLACK)
|
---|
| 606 | )
|
---|
[8] | 607 | {
|
---|
[83] | 608 | s->color = RED;
|
---|
[8] | 609 | tree = tree->parent;
|
---|
| 610 | }
|
---|
| 611 | else
|
---|
| 612 | {
|
---|
[83] | 613 | if (s->right->color == BLACK)
|
---|
[8] | 614 | {
|
---|
[83] | 615 | s->left->color = BLACK;
|
---|
| 616 | s->color = RED;
|
---|
| 617 | rotateRight(root, s);
|
---|
| 618 | s = tree->parent->right;
|
---|
[8] | 619 | }
|
---|
[83] | 620 | s->color = tree->parent->color;
|
---|
| 621 | tree->parent->color = BLACK;
|
---|
| 622 | s->right->color = BLACK;
|
---|
| 623 | rotateLeft(root, tree->parent);
|
---|
[8] | 624 | tree = *root;
|
---|
| 625 | }
|
---|
| 626 | }
|
---|
| 627 | else
|
---|
| 628 | {
|
---|
[83] | 629 | s = tree->parent->left;
|
---|
| 630 | if (s->color == RED)
|
---|
[8] | 631 | {
|
---|
[83] | 632 | s->color = BLACK;
|
---|
| 633 | tree->parent->color = RED;
|
---|
| 634 | rotateRight(root, tree->parent);
|
---|
| 635 | s = tree->parent->left;
|
---|
[8] | 636 | }
|
---|
[83] | 637 | if ( (s->right->color == BLACK)
|
---|
| 638 | && (s->left->color == BLACK)
|
---|
| 639 | )
|
---|
[8] | 640 | {
|
---|
[83] | 641 | s->color = RED;
|
---|
[8] | 642 | tree = tree->parent;
|
---|
| 643 | }
|
---|
| 644 | else
|
---|
| 645 | {
|
---|
[83] | 646 | if (s->left->color == BLACK)
|
---|
[8] | 647 | {
|
---|
[83] | 648 | s->right->color = BLACK;
|
---|
| 649 | s->color = RED;
|
---|
| 650 | rotateLeft(root, s);
|
---|
| 651 | s = tree->parent->left;
|
---|
[8] | 652 | }
|
---|
[83] | 653 | s->color = tree->parent->color;
|
---|
| 654 | tree->parent->color = BLACK;
|
---|
| 655 | s->left->color = BLACK;
|
---|
| 656 | rotateRight (root, tree->parent);
|
---|
[8] | 657 | tree = *root;
|
---|
| 658 | }
|
---|
| 659 | }
|
---|
| 660 | }
|
---|
[196] | 661 |
|
---|
[83] | 662 | tree->color = BLACK;
|
---|
[8] | 663 | }
|
---|
| 664 |
|
---|
| 665 | /*
|
---|
[83] | 666 | *@@ treeDelete:
|
---|
| 667 | * removes the specified node from the tree.
|
---|
| 668 | * Does not free() the node though.
|
---|
| 669 | *
|
---|
[116] | 670 | * In addition, if (plCount != NULL), *plCount is
|
---|
| 671 | * decremented.
|
---|
| 672 | *
|
---|
[83] | 673 | * Returns 0 if the node was deleted or
|
---|
| 674 | * STATUS_INVALID_NODE if not.
|
---|
[113] | 675 | *
|
---|
| 676 | *@@changed V0.9.16 (2001-10-19) [umoeller]: added plCount
|
---|
[8] | 677 | */
|
---|
| 678 |
|
---|
[83] | 679 | int treeDelete(TREE **root, // in: root of the tree
|
---|
[116] | 680 | PLONG plCount, // in/out: item count (ptr can be NULL)
|
---|
[83] | 681 | TREE *tree) // in: tree node to delete
|
---|
[8] | 682 | {
|
---|
[83] | 683 | TREE *y,
|
---|
| 684 | *d;
|
---|
| 685 | nodeColor color;
|
---|
[8] | 686 |
|
---|
[83] | 687 | if ( (!tree)
|
---|
| 688 | || (tree == LEAF)
|
---|
| 689 | )
|
---|
| 690 | return STATUS_INVALID_NODE;
|
---|
[8] | 691 |
|
---|
[83] | 692 | if ( (tree->left == LEAF)
|
---|
| 693 | || (tree->right == LEAF)
|
---|
| 694 | )
|
---|
| 695 | // d has a TREE_NULL node as a child
|
---|
| 696 | d = tree;
|
---|
| 697 | else
|
---|
| 698 | {
|
---|
| 699 | // find tree successor with a TREE_NULL node as a child
|
---|
| 700 | d = tree->right;
|
---|
| 701 | while (d->left != LEAF)
|
---|
| 702 | d = d->left;
|
---|
| 703 | }
|
---|
[8] | 704 |
|
---|
[83] | 705 | // y is d's only child, if there is one, else TREE_NULL
|
---|
| 706 | if (d->left != LEAF)
|
---|
| 707 | y = d->left;
|
---|
| 708 | else
|
---|
| 709 | y = d->right;
|
---|
[8] | 710 |
|
---|
[83] | 711 | // remove d from the parent chain
|
---|
| 712 | if (y != LEAF)
|
---|
| 713 | y->parent = d->parent;
|
---|
[196] | 714 |
|
---|
[83] | 715 | if (d->parent)
|
---|
| 716 | {
|
---|
| 717 | if (d == d->parent->left)
|
---|
| 718 | d->parent->left = y;
|
---|
| 719 | else
|
---|
| 720 | d->parent->right = y;
|
---|
| 721 | }
|
---|
| 722 | else
|
---|
| 723 | *root = y;
|
---|
[8] | 724 |
|
---|
[83] | 725 | color = d->color;
|
---|
| 726 |
|
---|
| 727 | if (d != tree)
|
---|
| 728 | {
|
---|
| 729 | // move the data from d to tree; we do this by
|
---|
| 730 | // linking d into the structure in the place of tree
|
---|
| 731 | d->left = tree->left;
|
---|
| 732 | d->right = tree->right;
|
---|
| 733 | d->parent = tree->parent;
|
---|
| 734 | d->color = tree->color;
|
---|
| 735 |
|
---|
| 736 | if (d->parent)
|
---|
[8] | 737 | {
|
---|
[83] | 738 | if (tree == d->parent->left)
|
---|
| 739 | d->parent->left = d;
|
---|
| 740 | else
|
---|
| 741 | d->parent->right = d;
|
---|
[8] | 742 | }
|
---|
[83] | 743 | else
|
---|
| 744 | *root = d;
|
---|
[8] | 745 |
|
---|
[83] | 746 | if (d->left != LEAF)
|
---|
| 747 | d->left->parent = d;
|
---|
[8] | 748 |
|
---|
[83] | 749 | if (d->right != LEAF)
|
---|
| 750 | d->right->parent = d;
|
---|
| 751 | }
|
---|
[8] | 752 |
|
---|
[83] | 753 | if ( (y != LEAF)
|
---|
| 754 | && (color == BLACK)
|
---|
| 755 | )
|
---|
| 756 | deleteFixup(root,
|
---|
| 757 | y);
|
---|
[8] | 758 |
|
---|
[113] | 759 | if (plCount)
|
---|
| 760 | (*plCount)--; // V0.9.16 (2001-10-19) [umoeller]
|
---|
| 761 |
|
---|
[238] | 762 | return STATUS_OK;
|
---|
[8] | 763 | }
|
---|
| 764 |
|
---|
| 765 | /*
|
---|
[83] | 766 | *@@ treeFind:
|
---|
| 767 | * finds the tree node with the specified key.
|
---|
[86] | 768 | * Returns NULL if none exists.
|
---|
[8] | 769 | */
|
---|
| 770 |
|
---|
[83] | 771 | TREE* treeFind(TREE *root, // in: root of the tree
|
---|
| 772 | unsigned long key, // in: key to find
|
---|
| 773 | FNTREE_COMPARE *pfnCompare) // in: comparison func
|
---|
[8] | 774 | {
|
---|
[83] | 775 | TREE *current = root;
|
---|
| 776 | while (current != LEAF)
|
---|
[8] | 777 | {
|
---|
[83] | 778 | int iResult;
|
---|
[196] | 779 | if (!(iResult = pfnCompare(key, current->ulKey)))
|
---|
| 780 | return current;
|
---|
| 781 |
|
---|
| 782 | current = (iResult < 0)
|
---|
| 783 | ? current->left
|
---|
| 784 | : current->right;
|
---|
[8] | 785 | }
|
---|
[83] | 786 |
|
---|
| 787 | return 0;
|
---|
[8] | 788 | }
|
---|
| 789 |
|
---|
| 790 | /*
|
---|
| 791 | *@@ treeFirst:
|
---|
| 792 | * finds and returns the first node in a (sub-)tree.
|
---|
[39] | 793 | *
|
---|
| 794 | * See treeNext for a sample usage for traversing a tree.
|
---|
[8] | 795 | */
|
---|
| 796 |
|
---|
[83] | 797 | TREE* treeFirst(TREE *r)
|
---|
[8] | 798 | {
|
---|
[83] | 799 | TREE *p;
|
---|
[8] | 800 |
|
---|
[83] | 801 | if ( (!r)
|
---|
| 802 | || (r == LEAF)
|
---|
[39] | 803 | )
|
---|
[8] | 804 | return NULL;
|
---|
| 805 |
|
---|
[83] | 806 | p = r;
|
---|
| 807 | while (p->left != LEAF)
|
---|
| 808 | p = p->left;
|
---|
[8] | 809 |
|
---|
[83] | 810 | return p;
|
---|
[8] | 811 | }
|
---|
| 812 |
|
---|
| 813 | /*
|
---|
| 814 | *@@ treeLast:
|
---|
| 815 | * finds and returns the last node in a (sub-)tree.
|
---|
| 816 | */
|
---|
| 817 |
|
---|
[83] | 818 | TREE* treeLast(TREE *r)
|
---|
[8] | 819 | {
|
---|
[83] | 820 | TREE *p;
|
---|
[8] | 821 |
|
---|
[83] | 822 | if ( (!r)
|
---|
| 823 | || (r == LEAF))
|
---|
[8] | 824 | return NULL;
|
---|
| 825 |
|
---|
[83] | 826 | p = r;
|
---|
| 827 | while (p->right != LEAF)
|
---|
| 828 | p = p->right;
|
---|
[8] | 829 |
|
---|
[83] | 830 | return p;
|
---|
[8] | 831 | }
|
---|
| 832 |
|
---|
| 833 | /*
|
---|
| 834 | *@@ treeNext:
|
---|
| 835 | * finds and returns the next node in a tree.
|
---|
[39] | 836 | *
|
---|
[83] | 837 | * Example for traversing a whole tree:
|
---|
[39] | 838 | *
|
---|
| 839 | + TREE *TreeRoot;
|
---|
| 840 | + ...
|
---|
| 841 | + TREE* pNode = treeFirst(TreeRoot);
|
---|
| 842 | + while (pNode)
|
---|
| 843 | + {
|
---|
| 844 | + ...
|
---|
| 845 | + pNode = treeNext(pNode);
|
---|
| 846 | + }
|
---|
| 847 | *
|
---|
| 848 | * This runs through the tree items in sorted order.
|
---|
[8] | 849 | */
|
---|
| 850 |
|
---|
[83] | 851 | TREE* treeNext(TREE *r)
|
---|
[8] | 852 | {
|
---|
[83] | 853 | TREE *p,
|
---|
| 854 | *child;
|
---|
[8] | 855 |
|
---|
[83] | 856 | if ( (!r)
|
---|
| 857 | || (r == LEAF)
|
---|
[39] | 858 | )
|
---|
[8] | 859 | return NULL;
|
---|
| 860 |
|
---|
[83] | 861 | p = r;
|
---|
| 862 | if (p->right != LEAF)
|
---|
[196] | 863 | return treeFirst(p->right);
|
---|
| 864 |
|
---|
| 865 | p = r;
|
---|
| 866 | child = LEAF;
|
---|
| 867 | while ( (p->parent)
|
---|
| 868 | && (p->right == child)
|
---|
| 869 | )
|
---|
[8] | 870 | {
|
---|
[196] | 871 | child = p;
|
---|
| 872 | p = p->parent;
|
---|
[8] | 873 | }
|
---|
[196] | 874 |
|
---|
| 875 | if (p->right != child)
|
---|
| 876 | return p;
|
---|
| 877 |
|
---|
| 878 | return NULL;
|
---|
[8] | 879 | }
|
---|
| 880 |
|
---|
| 881 | /*
|
---|
| 882 | *@@ treePrev:
|
---|
| 883 | * finds and returns the previous node in a tree.
|
---|
| 884 | */
|
---|
| 885 |
|
---|
[83] | 886 | TREE* treePrev(TREE *r)
|
---|
[8] | 887 | {
|
---|
[83] | 888 | TREE *p,
|
---|
| 889 | *child;
|
---|
[8] | 890 |
|
---|
[83] | 891 | if ( (!r)
|
---|
[196] | 892 | || (r == LEAF)
|
---|
| 893 | )
|
---|
[8] | 894 | return NULL;
|
---|
| 895 |
|
---|
[83] | 896 | p = r;
|
---|
| 897 | if (p->left != LEAF)
|
---|
| 898 | return treeLast (p->left);
|
---|
[196] | 899 |
|
---|
| 900 | p = r;
|
---|
| 901 | child = LEAF;
|
---|
| 902 | while ( (p->parent)
|
---|
| 903 | && (p->left == child)
|
---|
| 904 | )
|
---|
[8] | 905 | {
|
---|
[196] | 906 | child = p;
|
---|
| 907 | p = p->parent;
|
---|
[8] | 908 | }
|
---|
[196] | 909 |
|
---|
| 910 | if (p->left != child)
|
---|
| 911 | return p;
|
---|
| 912 |
|
---|
| 913 | return NULL;
|
---|
[8] | 914 | }
|
---|
| 915 |
|
---|
[55] | 916 | /*
|
---|
| 917 | *@@ treeBuildArray:
|
---|
| 918 | * builds an array of TREE* pointers containing
|
---|
| 919 | * all tree items in sorted order.
|
---|
| 920 | *
|
---|
| 921 | * This returns a TREE** pointer to the array.
|
---|
| 922 | * Each item in the array is a TREE* pointer to
|
---|
| 923 | * the respective tree item.
|
---|
| 924 | *
|
---|
| 925 | * The array has been allocated using malloc()
|
---|
| 926 | * and must be free()'d by the caller.
|
---|
| 927 | *
|
---|
| 928 | * NOTE: This will only work if you maintain a
|
---|
| 929 | * tree node count yourself, which you must pass
|
---|
| 930 | * in *pulCount on input.
|
---|
| 931 | *
|
---|
| 932 | * This is most useful if you want to delete an
|
---|
| 933 | * entire tree without having to traverse it
|
---|
| 934 | * and rebalance the tree on every delete.
|
---|
| 935 | *
|
---|
| 936 | * Example usage for deletion:
|
---|
| 937 | *
|
---|
| 938 | + TREE *G_TreeRoot;
|
---|
| 939 | + treeInit(&G_TreeRoot);
|
---|
| 940 | +
|
---|
| 941 | + // add stuff to the tree
|
---|
| 942 | + TREE *pNewNode = malloc(...);
|
---|
[83] | 943 | + treeInsert(&G_TreeRoot, pNewNode, fnCompare)
|
---|
[55] | 944 | +
|
---|
| 945 | + // now delete all nodes
|
---|
| 946 | + ULONG cItems = ... // insert item count here
|
---|
| 947 | + TREE** papNodes = treeBuildArray(G_TreeRoot,
|
---|
| 948 | + &cItems);
|
---|
| 949 | + if (papNodes)
|
---|
| 950 | + {
|
---|
| 951 | + ULONG ul;
|
---|
| 952 | + for (ul = 0; ul < cItems; ul++)
|
---|
| 953 | + {
|
---|
| 954 | + TREE *pNodeThis = papNodes[ul];
|
---|
| 955 | + free(pNodeThis);
|
---|
| 956 | + }
|
---|
| 957 | +
|
---|
| 958 | + free(papNodes);
|
---|
| 959 | + }
|
---|
| 960 | +
|
---|
| 961 | *
|
---|
| 962 | *@@added V0.9.9 (2001-04-05) [umoeller]
|
---|
| 963 | */
|
---|
[8] | 964 |
|
---|
[55] | 965 | TREE** treeBuildArray(TREE* pRoot,
|
---|
[113] | 966 | PLONG plCount) // in: item count, out: array item count
|
---|
[55] | 967 | {
|
---|
| 968 | TREE **papNodes = NULL,
|
---|
| 969 | **papThis = NULL;
|
---|
[113] | 970 | long cb = (sizeof(TREE*) * (*plCount)),
|
---|
[55] | 971 | cNodes = 0;
|
---|
| 972 |
|
---|
| 973 | if (cb)
|
---|
| 974 | {
|
---|
| 975 | papNodes = (TREE**)malloc(cb);
|
---|
| 976 | papThis = papNodes;
|
---|
| 977 |
|
---|
| 978 | if (papNodes)
|
---|
| 979 | {
|
---|
| 980 | TREE *pNode = (TREE*)treeFirst(pRoot);
|
---|
| 981 |
|
---|
| 982 | memset(papNodes, 0, cb);
|
---|
| 983 |
|
---|
| 984 | // copy nodes to array
|
---|
| 985 | while ( pNode
|
---|
[113] | 986 | && cNodes < (*plCount) // just to make sure
|
---|
[55] | 987 | )
|
---|
| 988 | {
|
---|
| 989 | *papThis = pNode;
|
---|
| 990 | cNodes++;
|
---|
| 991 | papThis++;
|
---|
| 992 |
|
---|
| 993 | pNode = (TREE*)treeNext(pNode);
|
---|
| 994 | }
|
---|
| 995 |
|
---|
| 996 | // output count
|
---|
[113] | 997 | *plCount = cNodes;
|
---|
[55] | 998 | }
|
---|
| 999 | }
|
---|
| 1000 |
|
---|
[238] | 1001 | return papNodes;
|
---|
[55] | 1002 | }
|
---|
| 1003 |
|
---|
[83] | 1004 | /* void main(int argc, char **argv) {
|
---|
| 1005 | int maxnum, ct;
|
---|
| 1006 | recType rec;
|
---|
| 1007 | keyType key;
|
---|
| 1008 | statusEnum status;
|
---|
[55] | 1009 |
|
---|
[83] | 1010 | maxnum = atoi(argv[1]);
|
---|
| 1011 |
|
---|
| 1012 | printf("maxnum = %d\n", maxnum);
|
---|
| 1013 | for (ct = maxnum; ct; ct--) {
|
---|
| 1014 | key = rand() % 9 + 1;
|
---|
| 1015 | if ((status = find(key, &rec)) == STATUS_OK) {
|
---|
| 1016 | status = delete(key);
|
---|
| 1017 | if (status) printf("fail: status = %d\n", status);
|
---|
| 1018 | } else {
|
---|
| 1019 | status = insert(key, &rec);
|
---|
| 1020 | if (status) printf("fail: status = %d\n", status);
|
---|
| 1021 | }
|
---|
| 1022 | }
|
---|
| 1023 | } */
|
---|