1 |
|
---|
2 | /*
|
---|
3 | *@@sourcefile math.c:
|
---|
4 | * some math helpers.
|
---|
5 | *
|
---|
6 | * This file is new with V0.9.14 (2001-07-07) [umoeller]
|
---|
7 | * Unless marked otherwise, these things are based
|
---|
8 | * on public domain code found at
|
---|
9 | * "ftp://ftp.cdrom.com/pub/algorithms/c/".
|
---|
10 | *
|
---|
11 | * Usage: All C programs.
|
---|
12 | *
|
---|
13 | * Function prefix:
|
---|
14 | *
|
---|
15 | * -- math*: semaphore helpers.
|
---|
16 | *
|
---|
17 | *@@added V0.9.14 (2001-07-07) [umoeller]
|
---|
18 | *@@header "helpers\math.h"
|
---|
19 | */
|
---|
20 |
|
---|
21 | #define OS2EMX_PLAIN_CHAR
|
---|
22 | // this is needed for "os2emx.h"; if this is defined,
|
---|
23 | // emx will define PSZ as _signed_ char, otherwise
|
---|
24 | // as unsigned char
|
---|
25 |
|
---|
26 | #include <stdlib.h>
|
---|
27 | #include <stdio.h>
|
---|
28 | #include <math.h>
|
---|
29 |
|
---|
30 | #include "setup.h" // code generation and debugging options
|
---|
31 |
|
---|
32 | #include "helpers\math.h"
|
---|
33 | #include "helpers\linklist.h"
|
---|
34 | #include "helpers\standards.h"
|
---|
35 |
|
---|
36 | #pragma hdrstop
|
---|
37 |
|
---|
38 | /*
|
---|
39 | *@@category: Helpers\Math helpers
|
---|
40 | * see math.c.
|
---|
41 | */
|
---|
42 |
|
---|
43 | /*
|
---|
44 | *@@ mathGCD:
|
---|
45 | * returns the greatest common denominator that
|
---|
46 | * evenly divides m and n.
|
---|
47 | *
|
---|
48 | * For example, mathGCD(10, 12) would return 2.
|
---|
49 | */
|
---|
50 |
|
---|
51 | int mathGCD(int m, int n)
|
---|
52 | {
|
---|
53 | int d = m;
|
---|
54 | int r = n;
|
---|
55 |
|
---|
56 | while (r != 0)
|
---|
57 | {
|
---|
58 | d = r;
|
---|
59 | r = m % r;
|
---|
60 | }
|
---|
61 |
|
---|
62 | return d;
|
---|
63 | }
|
---|
64 |
|
---|
65 | /*
|
---|
66 | *@@ mathIsSquare:
|
---|
67 | * returns 1 if x is a perfect square, that is, if
|
---|
68 | *
|
---|
69 | + sqrt(x) ^ 2 ==x
|
---|
70 | */
|
---|
71 |
|
---|
72 | int mathIsSquare(int x)
|
---|
73 | {
|
---|
74 | int t;
|
---|
75 | int z = x % 4849845; // 4849845 = 3*5*7*11*13*17*19
|
---|
76 | double r;
|
---|
77 | // do some quick tests on x to see if we can quickly
|
---|
78 | // eliminate it as a square using quadratic-residues.
|
---|
79 | if (z % 3 == 2)
|
---|
80 | return 0;
|
---|
81 |
|
---|
82 | t = z % 5;
|
---|
83 | if((t==2) || (t==3))
|
---|
84 | return 0;
|
---|
85 | t = z % 7;
|
---|
86 | if((t==3) || (t==5) || (t==6))
|
---|
87 | return 0;
|
---|
88 | t = z % 11;
|
---|
89 | if((t==2) || (t==6) || (t==7) || (t==8) || (t==10))
|
---|
90 | return 0;
|
---|
91 | t = z % 13;
|
---|
92 | if((t==2) || (t==5) || (t==6) || (t==7) || (t==8) || (t==11))
|
---|
93 | return 0;
|
---|
94 | t = z % 17;
|
---|
95 | if((t==3) || (t==5) || (t==6) || (t==7) || (t==10) || (t==11) || (t==12) || (t==14))
|
---|
96 | return 0;
|
---|
97 | t = z % 19;
|
---|
98 | if((t==2) || (t==3) || (t==8) || (t==10) || (t==12) || (t==13) || (t==14) || (t==15) || (t==18))
|
---|
99 | return 0;
|
---|
100 |
|
---|
101 | // If we get here, we'll have to just try taking
|
---|
102 | // square-root & compare its square...
|
---|
103 | r = sqrt(abs(x));
|
---|
104 | if (r*r == abs(x))
|
---|
105 | return 1;
|
---|
106 |
|
---|
107 | return 0;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /*
|
---|
111 | *@@ mathFindFactor:
|
---|
112 | * returns the smallest factor > 1 of n or 1 if n is prime.
|
---|
113 | *
|
---|
114 | * From "http://tph.tuwien.ac.at/~oemer/doc/quprog/node28.html".
|
---|
115 | */
|
---|
116 |
|
---|
117 | int mathFindFactor(int n)
|
---|
118 | {
|
---|
119 | int i,
|
---|
120 | max;
|
---|
121 | if (n <= 0)
|
---|
122 | return 0;
|
---|
123 |
|
---|
124 | max = floor(sqrt(n));
|
---|
125 |
|
---|
126 | for (i=2;
|
---|
127 | i <= max;
|
---|
128 | i++)
|
---|
129 | {
|
---|
130 | if (n % i == 0)
|
---|
131 | return i;
|
---|
132 | }
|
---|
133 | return 1;
|
---|
134 | }
|
---|
135 |
|
---|
136 | /*
|
---|
137 | *@@ testprime:
|
---|
138 | * returns 1 if n is a prime number.
|
---|
139 | *
|
---|
140 | * From "http://tph.tuwien.ac.at/~oemer/doc/quprog/node28.html".
|
---|
141 | */
|
---|
142 |
|
---|
143 | int mathIsPrime(unsigned n)
|
---|
144 | {
|
---|
145 | int i,
|
---|
146 | max = floor(sqrt(n));
|
---|
147 |
|
---|
148 | if (n <= 1)
|
---|
149 | return 0;
|
---|
150 |
|
---|
151 | for (i=2;
|
---|
152 | i <= max;
|
---|
153 | i++)
|
---|
154 | {
|
---|
155 | if (n % i == 0)
|
---|
156 | return 0;
|
---|
157 | }
|
---|
158 |
|
---|
159 | return 1;
|
---|
160 | }
|
---|
161 |
|
---|
162 | /*
|
---|
163 | *@@ mathFactorBrute:
|
---|
164 | * calls pfnCallback with every integer that
|
---|
165 | * evenly divides n ("factor").
|
---|
166 | *
|
---|
167 | * pfnCallback must be declared as:
|
---|
168 | *
|
---|
169 | + int pfnCallback(int iFactor,
|
---|
170 | + int iPower,
|
---|
171 | + void *pUser);
|
---|
172 | *
|
---|
173 | * pfnCallback will receive the factor as its
|
---|
174 | * first parameter and pUser as its third.
|
---|
175 | * The second parameter will always be 1.
|
---|
176 | *
|
---|
177 | * The factor will not necessarily be prime,
|
---|
178 | * and it will never be 1 nor n.
|
---|
179 | *
|
---|
180 | * If the callback returns something != 0,
|
---|
181 | * computation is stopped.
|
---|
182 | *
|
---|
183 | * Returns the no. of factors found or 0 if
|
---|
184 | * n is prime.
|
---|
185 | *
|
---|
186 | * Example: mathFactor(42) will call the
|
---|
187 | * callback with
|
---|
188 | *
|
---|
189 | + 2 3 6 7 14 21
|
---|
190 | *
|
---|
191 | + This func is terribly slow.
|
---|
192 | */
|
---|
193 |
|
---|
194 | int mathFactorBrute(int n, // in: integer to factor
|
---|
195 | PFNFACTORCALLBACK pfnCallback, // in: callback func
|
---|
196 | void *pUser) // in: user param for callback
|
---|
197 | {
|
---|
198 | int rc = 0;
|
---|
199 |
|
---|
200 | if (n > 2)
|
---|
201 | {
|
---|
202 | int i;
|
---|
203 | int max = n / 2;
|
---|
204 |
|
---|
205 | for (i = 2;
|
---|
206 | i <= max;
|
---|
207 | i++)
|
---|
208 | {
|
---|
209 | if ((n % i) == 0)
|
---|
210 | {
|
---|
211 | rc++;
|
---|
212 | // call callback with i as the factor
|
---|
213 | if (pfnCallback(i,
|
---|
214 | 1,
|
---|
215 | pUser))
|
---|
216 | // stop then
|
---|
217 | break;
|
---|
218 | }
|
---|
219 | }
|
---|
220 | }
|
---|
221 |
|
---|
222 | return (rc);
|
---|
223 | }
|
---|
224 |
|
---|
225 | /*
|
---|
226 | *@@ mathFactorPrime:
|
---|
227 | * calls pfnCallback for every prime factor that
|
---|
228 | * evenly divides n.
|
---|
229 | *
|
---|
230 | * pfnCallback must be declared as:
|
---|
231 | *
|
---|
232 | + int pfnCallback(int iFactor,
|
---|
233 | + int iPower,
|
---|
234 | + void *pUser);
|
---|
235 | *
|
---|
236 | * pfnCallback will receive the prime as its
|
---|
237 | * first parameter, its power as its second,
|
---|
238 | * and pUser as its third.
|
---|
239 | *
|
---|
240 | * For example, with n = 200, pfnCallback will
|
---|
241 | * be called twice:
|
---|
242 | *
|
---|
243 | * 1) iFactor = 2, iPower = 3
|
---|
244 | *
|
---|
245 | * 2) iFactor = 5, iPower = 2
|
---|
246 | *
|
---|
247 | * because 2^3 * 5^2 is 200.
|
---|
248 | *
|
---|
249 | * Returns the no. of times that the callback
|
---|
250 | * was called. This will be the number of
|
---|
251 | * prime factors found or 0 if n is prime
|
---|
252 | * itself.
|
---|
253 | */
|
---|
254 |
|
---|
255 | int mathFactorPrime(double n,
|
---|
256 | PFNFACTORCALLBACK pfnCallback, // in: callback func
|
---|
257 | void *pUser) // in: user param for callback
|
---|
258 | {
|
---|
259 | int rc = 0;
|
---|
260 |
|
---|
261 | double d;
|
---|
262 | double k;
|
---|
263 |
|
---|
264 | if (n <= 3)
|
---|
265 | // this is a prime for sure
|
---|
266 | return 0;
|
---|
267 |
|
---|
268 | d = 2;
|
---|
269 | for (k = 0;
|
---|
270 | fmod(n, d) == 0;
|
---|
271 | k++)
|
---|
272 | {
|
---|
273 | n /= d;
|
---|
274 | }
|
---|
275 |
|
---|
276 | if (k)
|
---|
277 | {
|
---|
278 | rc++;
|
---|
279 | pfnCallback(d,
|
---|
280 | k,
|
---|
281 | pUser);
|
---|
282 | }
|
---|
283 |
|
---|
284 | for (d = 3;
|
---|
285 | d * d <= n;
|
---|
286 | d += 2)
|
---|
287 | {
|
---|
288 | for (k = 0;
|
---|
289 | fmod(n,d) == 0.0;
|
---|
290 | k++ )
|
---|
291 | {
|
---|
292 | n /= d;
|
---|
293 | }
|
---|
294 |
|
---|
295 | if (k)
|
---|
296 | {
|
---|
297 | rc++;
|
---|
298 | pfnCallback(d,
|
---|
299 | k,
|
---|
300 | pUser);
|
---|
301 | }
|
---|
302 | }
|
---|
303 |
|
---|
304 | if (n > 1)
|
---|
305 | {
|
---|
306 | if (!rc)
|
---|
307 | return (0);
|
---|
308 |
|
---|
309 | rc++;
|
---|
310 | pfnCallback(n,
|
---|
311 | 1,
|
---|
312 | pUser);
|
---|
313 | }
|
---|
314 |
|
---|
315 | return (rc);
|
---|
316 | }
|
---|
317 |
|
---|
318 | typedef struct _PRIMEDATA
|
---|
319 | {
|
---|
320 | LINKLIST llPrimes;
|
---|
321 | int iCurrentInt;
|
---|
322 | } PRIMEDATA, *PPRIMEDATA;
|
---|
323 |
|
---|
324 |
|
---|
325 | typedef struct _PRIMEENTRY
|
---|
326 | {
|
---|
327 | int iPrime;
|
---|
328 | int iLowestPowerFound;
|
---|
329 | // lowest power that was found for this prime number;
|
---|
330 | // if 0, a prime was previously present and then not
|
---|
331 | // for a later prime
|
---|
332 | int iLastInt;
|
---|
333 | } PRIMEENTRY, *PPRIMEENTRY;
|
---|
334 |
|
---|
335 | /*
|
---|
336 | *@@ GCDMultiCallbackCreate:
|
---|
337 | * first callback for mathGCDMulti.
|
---|
338 | */
|
---|
339 |
|
---|
340 | int XWPENTRY GCDMultiCallbackCreate(int n, // in: prime
|
---|
341 | int p, // in: power
|
---|
342 | void *pUser) // in: user param, here root of tree
|
---|
343 | {
|
---|
344 | // see if we had this
|
---|
345 | PPRIMEDATA pData = (PPRIMEDATA)pUser;
|
---|
346 | PLISTNODE pNode;
|
---|
347 | PPRIMEENTRY pEntry;
|
---|
348 | for (pNode = lstQueryFirstNode(&pData->llPrimes);
|
---|
349 | pNode;
|
---|
350 | pNode = pNode->pNext)
|
---|
351 | {
|
---|
352 | pEntry = (PPRIMEENTRY)pNode->pItemData;
|
---|
353 | if (pEntry->iPrime == n)
|
---|
354 | {
|
---|
355 | // mark this as processed so we can later see
|
---|
356 | // if the current integer had this prime factor
|
---|
357 | // at all
|
---|
358 | pEntry->iLastInt = pData->iCurrentInt;
|
---|
359 |
|
---|
360 | // printf(" %d^%d", n, p);
|
---|
361 |
|
---|
362 | // and stop
|
---|
363 | return 0;
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 | // no entry for this yet:
|
---|
368 | // printf(" %d^%d", n, p);
|
---|
369 | pEntry = NEW(PRIMEENTRY);
|
---|
370 | pEntry->iPrime = n;
|
---|
371 | pEntry->iLowestPowerFound = p;
|
---|
372 | pEntry->iLastInt = pData->iCurrentInt;
|
---|
373 | lstAppendItem(&pData->llPrimes, pEntry);
|
---|
374 |
|
---|
375 | return (0);
|
---|
376 | }
|
---|
377 |
|
---|
378 | /*
|
---|
379 | *@@ GCDMultiCallbackLowest:
|
---|
380 | * second callback for mathGCDMulti.
|
---|
381 | */
|
---|
382 |
|
---|
383 | int XWPENTRY GCDMultiCallbackLowest(int n, // in: prime
|
---|
384 | int p, // in: power
|
---|
385 | void *pUser) // in: user param, here root of tree
|
---|
386 | {
|
---|
387 | // see if we had this
|
---|
388 | PPRIMEDATA pData = (PPRIMEDATA)pUser;
|
---|
389 | PLISTNODE pNode;
|
---|
390 | PPRIMEENTRY pEntry;
|
---|
391 | for (pNode = lstQueryFirstNode(&pData->llPrimes);
|
---|
392 | pNode;
|
---|
393 | pNode = pNode->pNext)
|
---|
394 | {
|
---|
395 | pEntry = (PPRIMEENTRY)pNode->pItemData;
|
---|
396 | if (pEntry->iPrime == n)
|
---|
397 | {
|
---|
398 | if (p < pEntry->iLowestPowerFound)
|
---|
399 | {
|
---|
400 | pEntry->iLowestPowerFound = p;
|
---|
401 | // printf(" %d^%d", n, p);
|
---|
402 | }
|
---|
403 | pEntry->iLastInt = pData->iCurrentInt;
|
---|
404 |
|
---|
405 | // and stop
|
---|
406 | return 0;
|
---|
407 | }
|
---|
408 | }
|
---|
409 |
|
---|
410 | exit(1);
|
---|
411 |
|
---|
412 | return (0);
|
---|
413 | }
|
---|
414 |
|
---|
415 | /*
|
---|
416 | *@@ mathGCDMulti:
|
---|
417 | * finds the greatest common divisor for a
|
---|
418 | * whole array of integers.
|
---|
419 | *
|
---|
420 | * For example, if you pass in three integers
|
---|
421 | * 1000, 1500, and 1800, this would return 100.
|
---|
422 | * If you only pass in 1000 and 1500, you'd
|
---|
423 | * get 500.
|
---|
424 | *
|
---|
425 | * Potentially expensive since this calls
|
---|
426 | * mathFactorPrime for each integer in the
|
---|
427 | * array first.
|
---|
428 | */
|
---|
429 |
|
---|
430 | int mathGCDMulti(int *paNs, // in: array of integers
|
---|
431 | int cNs) // in: array item count (NOT array size)
|
---|
432 | {
|
---|
433 | int i;
|
---|
434 | double dGCD;
|
---|
435 |
|
---|
436 | PLISTNODE pNode;
|
---|
437 | PPRIMEENTRY pEntry;
|
---|
438 |
|
---|
439 | PRIMEDATA Data;
|
---|
440 | lstInit(&Data.llPrimes, TRUE);
|
---|
441 |
|
---|
442 | // this is done by prime-factoring each frequency
|
---|
443 | // and then multiplying all primes with the lowest
|
---|
444 | // common power that we found:
|
---|
445 |
|
---|
446 | // Example 1: If we have two timers with freq.
|
---|
447 | // 1000 and 1500, obviously, the master timer
|
---|
448 | // should run at 500 ms.
|
---|
449 |
|
---|
450 | // With prime factorization, we end up like this:
|
---|
451 |
|
---|
452 | // 1000 = 2^3 * 5^3
|
---|
453 | // 1500 = 2^2 * 3^1 * 5^3
|
---|
454 |
|
---|
455 | // so the highest power for factor 2 is 2;
|
---|
456 | // the highest power for factor 3 is 0;
|
---|
457 | // the highest power for factor 5 is 3;
|
---|
458 |
|
---|
459 | // freq = 2^2 * 5^3 = 500
|
---|
460 |
|
---|
461 | // Example 2: If we have three timers with freq.
|
---|
462 | // 1000 and 1500 and 1800:
|
---|
463 |
|
---|
464 | // 1000 = 2^3 * 5^3
|
---|
465 | // 1500 = 2^2 * 3^1 * 5^3
|
---|
466 | // 1800 = 2^3 * 3^2 * 5^2
|
---|
467 |
|
---|
468 | // so the highest power for factor 2 is 2;
|
---|
469 | // the highest power for factor 3 is 0;
|
---|
470 | // the highest power for factor 5 is 2;
|
---|
471 |
|
---|
472 | // freq = 2^2 * * 5^2 = 100
|
---|
473 |
|
---|
474 | // Example 3: If we have four timers with freq.
|
---|
475 | // 1200 and 1500 and 1800 and 60:
|
---|
476 |
|
---|
477 | // 1200 = 2^4 * 3^1 * 5^2
|
---|
478 | // 1500 = 2^2 * 3^1 * 5^3
|
---|
479 | // 1800 = 2^3 * 3^2 * 5^2
|
---|
480 | // 60 = 2^2 * 3^1 * 5^1
|
---|
481 |
|
---|
482 | // so the highest power for factor 2 is 2;
|
---|
483 | // the highest power for factor 3 is 1;
|
---|
484 | // the highest power for factor 5 is 1;
|
---|
485 |
|
---|
486 | // freq = 2^2 * 3^1 * 5^1 = 60
|
---|
487 |
|
---|
488 | // go thru the ints array to create
|
---|
489 | // an entry for each prime there is
|
---|
490 | for (i = 0;
|
---|
491 | i < cNs;
|
---|
492 | i++)
|
---|
493 | {
|
---|
494 | // printf("\nFactoring %d\n", paNs[i]);
|
---|
495 | Data.iCurrentInt = paNs[i];
|
---|
496 | mathFactorPrime(paNs[i],
|
---|
497 | GCDMultiCallbackCreate,
|
---|
498 | &Data);
|
---|
499 | }
|
---|
500 |
|
---|
501 | // now run this a second time to find the
|
---|
502 | // lowest prime for each
|
---|
503 | for (i = 0;
|
---|
504 | i < cNs;
|
---|
505 | i++)
|
---|
506 | {
|
---|
507 | // printf("\nTouching %d\n", paNs[i]);
|
---|
508 | Data.iCurrentInt = paNs[i];
|
---|
509 | mathFactorPrime(paNs[i],
|
---|
510 | GCDMultiCallbackLowest,
|
---|
511 | &Data);
|
---|
512 |
|
---|
513 | // all list items that were just touched
|
---|
514 | // now have iLastInt set to the current
|
---|
515 | // integer; so go thru the list and set
|
---|
516 | // all items which do NOT have that set
|
---|
517 | // to power 0 because we must not use them
|
---|
518 | // in factoring
|
---|
519 | for (pNode = lstQueryFirstNode(&Data.llPrimes);
|
---|
520 | pNode;
|
---|
521 | pNode = pNode->pNext)
|
---|
522 | {
|
---|
523 | pEntry = (PPRIMEENTRY)pNode->pItemData;
|
---|
524 | if (pEntry->iLastInt != paNs[i])
|
---|
525 | {
|
---|
526 | pEntry->iLowestPowerFound = 0;
|
---|
527 | // printf(" ###%d^%d", pEntry->iPrime, 0);
|
---|
528 | }
|
---|
529 | }
|
---|
530 | }
|
---|
531 |
|
---|
532 | // printf("\nNew:\n");
|
---|
533 |
|
---|
534 | // now compose the GCD
|
---|
535 | dGCD = 1;
|
---|
536 | for (pNode = lstQueryFirstNode(&Data.llPrimes);
|
---|
537 | pNode;
|
---|
538 | pNode = pNode->pNext)
|
---|
539 | {
|
---|
540 | pEntry = (PPRIMEENTRY)pNode->pItemData;
|
---|
541 |
|
---|
542 | // printf(" %d^%d", pEntry->iPrime, pEntry->iLowestPowerFound);
|
---|
543 |
|
---|
544 | if (pEntry->iLowestPowerFound)
|
---|
545 | dGCD *= pow(pEntry->iPrime, pEntry->iLowestPowerFound);
|
---|
546 | }
|
---|
547 |
|
---|
548 | lstClear(&Data.llPrimes);
|
---|
549 |
|
---|
550 | return dGCD;
|
---|
551 | }
|
---|
552 |
|
---|
553 | // testcase
|
---|
554 |
|
---|
555 | #ifdef BUILD_MAIN
|
---|
556 |
|
---|
557 | #define INCL_DOSMISC
|
---|
558 | #include <os2.h>
|
---|
559 |
|
---|
560 | int callback(int n,
|
---|
561 | int p,
|
---|
562 | void *pUser)
|
---|
563 | {
|
---|
564 | if (p > 1)
|
---|
565 | printf("%d^%d ", n, p);
|
---|
566 | else
|
---|
567 | printf("%d ", n);
|
---|
568 | fflush(stdout);
|
---|
569 |
|
---|
570 | return (0);
|
---|
571 | }
|
---|
572 |
|
---|
573 | int main (int argc, char *argv[])
|
---|
574 | {
|
---|
575 | if (argc > 1)
|
---|
576 | {
|
---|
577 | int i,
|
---|
578 | c,
|
---|
579 | cInts = argc - 1;
|
---|
580 | ULONG ulms, ulms2;
|
---|
581 | int *aInts = malloc(sizeof(int) * cInts);
|
---|
582 |
|
---|
583 | for (c = 0;
|
---|
584 | c < cInts;
|
---|
585 | c++)
|
---|
586 | {
|
---|
587 | aInts[c] = atoi(argv[c + 1]);
|
---|
588 | }
|
---|
589 |
|
---|
590 | DosQuerySysInfo(QSV_MS_COUNT,
|
---|
591 | QSV_MS_COUNT,
|
---|
592 | &ulms,
|
---|
593 | sizeof(ulms));
|
---|
594 |
|
---|
595 | c = mathGCDMulti(aInts,
|
---|
596 | cInts);
|
---|
597 |
|
---|
598 | DosQuerySysInfo(QSV_MS_COUNT,
|
---|
599 | QSV_MS_COUNT,
|
---|
600 | &ulms2,
|
---|
601 | sizeof(ulms2));
|
---|
602 |
|
---|
603 | printf("\nGCD is %d, %d ms time.\n",
|
---|
604 | c,
|
---|
605 | ulms2 - ulms);
|
---|
606 |
|
---|
607 | for (i = 0;
|
---|
608 | i < cInts;
|
---|
609 | i++)
|
---|
610 | {
|
---|
611 | printf(" %d / %d = %d rem. %d\n",
|
---|
612 | aInts[i], c, aInts[i] / c, aInts[i] % c);
|
---|
613 | }
|
---|
614 |
|
---|
615 | /* c = mathFactorBrute(atoi(argv[1]),
|
---|
616 | callback,
|
---|
617 | 0);
|
---|
618 | printf("\n%d factors found.\n", c); */
|
---|
619 | }
|
---|
620 |
|
---|
621 | return (0);
|
---|
622 | }
|
---|
623 |
|
---|
624 | #endif
|
---|