| 1 | // SPDX-License-Identifier: GPL-2.0-or-later
|
|---|
| 2 | /*
|
|---|
| 3 | Red Black Trees
|
|---|
| 4 | (C) 1999 Andrea Arcangeli <andrea@suse.de>
|
|---|
| 5 | (C) 2002 David Woodhouse <dwmw2@infradead.org>
|
|---|
| 6 | (C) 2012 Michel Lespinasse <walken@google.com>
|
|---|
| 7 |
|
|---|
| 8 |
|
|---|
| 9 | linux/lib/rbtree.c
|
|---|
| 10 | */
|
|---|
| 11 | /* from 5.10.10 */
|
|---|
| 12 |
|
|---|
| 13 | #include <linux/rbtree_augmented.h>
|
|---|
| 14 | #include <linux/export.h>
|
|---|
| 15 | #include <linux/module.h>
|
|---|
| 16 | #include <linux/printk.h>
|
|---|
| 17 |
|
|---|
| 18 | /*
|
|---|
| 19 | * red-black trees properties: https://en.wikipedia.org/wiki/Rbtree
|
|---|
| 20 | *
|
|---|
| 21 | * 1) A node is either red or black
|
|---|
| 22 | * 2) The root is black
|
|---|
| 23 | * 3) All leaves (NULL) are black
|
|---|
| 24 | * 4) Both children of every red node are black
|
|---|
| 25 | * 5) Every simple path from root to leaves contains the same number
|
|---|
| 26 | * of black nodes.
|
|---|
| 27 | *
|
|---|
| 28 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
|---|
| 29 | * consecutive red nodes in a path and every red node is therefore followed by
|
|---|
| 30 | * a black. So if B is the number of black nodes on every simple path (as per
|
|---|
| 31 | * 5), then the longest possible path due to 4 is 2B.
|
|---|
| 32 | *
|
|---|
| 33 | * We shall indicate color with case, where black nodes are uppercase and red
|
|---|
| 34 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
|---|
| 35 | * parentheses and have some accompanying text comment.
|
|---|
| 36 | */
|
|---|
| 37 |
|
|---|
| 38 | /*
|
|---|
| 39 | * Notes on lockless lookups:
|
|---|
| 40 | *
|
|---|
| 41 | * All stores to the tree structure (rb_left and rb_right) must be done using
|
|---|
| 42 | * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
|
|---|
| 43 | * tree structure as seen in program order.
|
|---|
| 44 | *
|
|---|
| 45 | * These two requirements will allow lockless iteration of the tree -- not
|
|---|
| 46 | * correct iteration mind you, tree rotations are not atomic so a lookup might
|
|---|
| 47 | * miss entire subtrees.
|
|---|
| 48 | *
|
|---|
| 49 | * But they do guarantee that any such traversal will only see valid elements
|
|---|
| 50 | * and that it will indeed complete -- does not get stuck in a loop.
|
|---|
| 51 | *
|
|---|
| 52 | * It also guarantees that if the lookup returns an element it is the 'correct'
|
|---|
| 53 | * one. But not returning an element does _NOT_ mean it's not present.
|
|---|
| 54 | *
|
|---|
| 55 | * NOTE:
|
|---|
| 56 | *
|
|---|
| 57 | * Stores to __rb_parent_color are not important for simple lookups so those
|
|---|
| 58 | * are left undone as of now. Nor did I check for loops involving parent
|
|---|
| 59 | * pointers.
|
|---|
| 60 | */
|
|---|
| 61 |
|
|---|
| 62 | static inline void rb_set_black(struct rb_node *rb)
|
|---|
| 63 | {
|
|---|
| 64 | rb->__rb_parent_color |= RB_BLACK;
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 | static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
|---|
| 68 | {
|
|---|
| 69 | return (struct rb_node *)red->__rb_parent_color;
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 | /*
|
|---|
| 73 | * Helper function for rotations:
|
|---|
| 74 | * - old's parent and color get assigned to new
|
|---|
| 75 | * - old gets assigned new as a parent and 'color' as a color.
|
|---|
| 76 | */
|
|---|
| 77 | static inline void
|
|---|
| 78 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
|---|
| 79 | struct rb_root *root, int color)
|
|---|
| 80 | {
|
|---|
| 81 | struct rb_node *parent = rb_parent(old);
|
|---|
| 82 | new->__rb_parent_color = old->__rb_parent_color;
|
|---|
| 83 | rb_set_parent_color(old, new, color);
|
|---|
| 84 | __rb_change_child(old, new, parent, root);
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | static inline void
|
|---|
| 88 | __rb_insert(struct rb_node *node, struct rb_root *root,
|
|---|
| 89 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|---|
| 90 | {
|
|---|
| 91 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
|---|
| 92 |
|
|---|
| 93 | while (true) {
|
|---|
| 94 | /*
|
|---|
| 95 | * Loop invariant: node is red.
|
|---|
| 96 | */
|
|---|
| 97 | if (unlikely(!parent)) {
|
|---|
| 98 | /*
|
|---|
| 99 | * The inserted node is root. Either this is the
|
|---|
| 100 | * first node, or we recursed at Case 1 below and
|
|---|
| 101 | * are no longer violating 4).
|
|---|
| 102 | */
|
|---|
| 103 | rb_set_parent_color(node, NULL, RB_BLACK);
|
|---|
| 104 | break;
|
|---|
| 105 | }
|
|---|
| 106 |
|
|---|
| 107 | /*
|
|---|
| 108 | * If there is a black parent, we are done.
|
|---|
| 109 | * Otherwise, take some corrective action as,
|
|---|
| 110 | * per 4), we don't want a red root or two
|
|---|
| 111 | * consecutive red nodes.
|
|---|
| 112 | */
|
|---|
| 113 | if(rb_is_black(parent))
|
|---|
| 114 | break;
|
|---|
| 115 |
|
|---|
| 116 | gparent = rb_red_parent(parent);
|
|---|
| 117 |
|
|---|
| 118 | tmp = gparent->rb_right;
|
|---|
| 119 | if (parent != tmp) { /* parent == gparent->rb_left */
|
|---|
| 120 | if (tmp && rb_is_red(tmp)) {
|
|---|
| 121 | /*
|
|---|
| 122 | * Case 1 - node's uncle is red (color flips).
|
|---|
| 123 | *
|
|---|
| 124 | * G g
|
|---|
| 125 | * / \ / \
|
|---|
| 126 | * p u --> P U
|
|---|
| 127 | * / /
|
|---|
| 128 | * n n
|
|---|
| 129 | *
|
|---|
| 130 | * However, since g's parent might be red, and
|
|---|
| 131 | * 4) does not allow this, we need to recurse
|
|---|
| 132 | * at g.
|
|---|
| 133 | */
|
|---|
| 134 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|---|
| 135 | rb_set_parent_color(parent, gparent, RB_BLACK);
|
|---|
| 136 | node = gparent;
|
|---|
| 137 | parent = rb_parent(node);
|
|---|
| 138 | rb_set_parent_color(node, parent, RB_RED);
|
|---|
| 139 | continue;
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | tmp = parent->rb_right;
|
|---|
| 143 | if (node == tmp) {
|
|---|
| 144 | /*
|
|---|
| 145 | * Case 2 - node's uncle is black and node is
|
|---|
| 146 | * the parent's right child (left rotate at parent).
|
|---|
| 147 | *
|
|---|
| 148 | * G G
|
|---|
| 149 | * / \ / \
|
|---|
| 150 | * p U --> n U
|
|---|
| 151 | * \ /
|
|---|
| 152 | * n p
|
|---|
| 153 | *
|
|---|
| 154 | * This still leaves us in violation of 4), the
|
|---|
| 155 | * continuation into Case 3 will fix that.
|
|---|
| 156 | */
|
|---|
| 157 | tmp = node->rb_left;
|
|---|
| 158 | WRITE_ONCE(parent->rb_right, tmp);
|
|---|
| 159 | WRITE_ONCE(node->rb_left, parent);
|
|---|
| 160 | if (tmp)
|
|---|
| 161 | rb_set_parent_color(tmp, parent,
|
|---|
| 162 | RB_BLACK);
|
|---|
| 163 | rb_set_parent_color(parent, node, RB_RED);
|
|---|
| 164 | augment_rotate(parent, node);
|
|---|
| 165 | parent = node;
|
|---|
| 166 | tmp = node->rb_right;
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | /*
|
|---|
| 170 | * Case 3 - node's uncle is black and node is
|
|---|
| 171 | * the parent's left child (right rotate at gparent).
|
|---|
| 172 | *
|
|---|
| 173 | * G P
|
|---|
| 174 | * / \ / \
|
|---|
| 175 | * p U --> n g
|
|---|
| 176 | * / \
|
|---|
| 177 | * n U
|
|---|
| 178 | */
|
|---|
| 179 | WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
|
|---|
| 180 | WRITE_ONCE(parent->rb_right, gparent);
|
|---|
| 181 | if (tmp)
|
|---|
| 182 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|---|
| 183 | __rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|---|
| 184 | augment_rotate(gparent, parent);
|
|---|
| 185 | break;
|
|---|
| 186 | } else {
|
|---|
| 187 | tmp = gparent->rb_left;
|
|---|
| 188 | if (tmp && rb_is_red(tmp)) {
|
|---|
| 189 | /* Case 1 - color flips */
|
|---|
| 190 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|---|
| 191 | rb_set_parent_color(parent, gparent, RB_BLACK);
|
|---|
| 192 | node = gparent;
|
|---|
| 193 | parent = rb_parent(node);
|
|---|
| 194 | rb_set_parent_color(node, parent, RB_RED);
|
|---|
| 195 | continue;
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | tmp = parent->rb_left;
|
|---|
| 199 | if (node == tmp) {
|
|---|
| 200 | /* Case 2 - right rotate at parent */
|
|---|
| 201 | tmp = node->rb_right;
|
|---|
| 202 | WRITE_ONCE(parent->rb_left, tmp);
|
|---|
| 203 | WRITE_ONCE(node->rb_right, parent);
|
|---|
| 204 | if (tmp)
|
|---|
| 205 | rb_set_parent_color(tmp, parent,
|
|---|
| 206 | RB_BLACK);
|
|---|
| 207 | rb_set_parent_color(parent, node, RB_RED);
|
|---|
| 208 | augment_rotate(parent, node);
|
|---|
| 209 | parent = node;
|
|---|
| 210 | tmp = node->rb_left;
|
|---|
| 211 | }
|
|---|
| 212 |
|
|---|
| 213 | /* Case 3 - left rotate at gparent */
|
|---|
| 214 | WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
|
|---|
| 215 | WRITE_ONCE(parent->rb_left, gparent);
|
|---|
| 216 | if (tmp)
|
|---|
| 217 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|---|
| 218 | __rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|---|
| 219 | augment_rotate(gparent, parent);
|
|---|
| 220 | break;
|
|---|
| 221 | }
|
|---|
| 222 | }
|
|---|
| 223 | }
|
|---|
| 224 |
|
|---|
| 225 | /*
|
|---|
| 226 | * Inline version for rb_erase() use - we want to be able to inline
|
|---|
| 227 | * and eliminate the dummy_rotate callback there
|
|---|
| 228 | */
|
|---|
| 229 | static inline void
|
|---|
| 230 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|---|
| 231 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|---|
| 232 | {
|
|---|
| 233 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
|
|---|
| 234 |
|
|---|
| 235 | while (true) {
|
|---|
| 236 | /*
|
|---|
| 237 | * Loop invariants:
|
|---|
| 238 | * - node is black (or NULL on first iteration)
|
|---|
| 239 | * - node is not the root (parent is not NULL)
|
|---|
| 240 | * - All leaf paths going through parent and node have a
|
|---|
| 241 | * black node count that is 1 lower than other leaf paths.
|
|---|
| 242 | */
|
|---|
| 243 | sibling = parent->rb_right;
|
|---|
| 244 | if (node != sibling) { /* node == parent->rb_left */
|
|---|
| 245 | if (rb_is_red(sibling)) {
|
|---|
| 246 | /*
|
|---|
| 247 | * Case 1 - left rotate at parent
|
|---|
| 248 | *
|
|---|
| 249 | * P S
|
|---|
| 250 | * / \ / \
|
|---|
| 251 | * N s --> p Sr
|
|---|
| 252 | * / \ / \
|
|---|
| 253 | * Sl Sr N Sl
|
|---|
| 254 | */
|
|---|
| 255 | tmp1 = sibling->rb_left;
|
|---|
| 256 | WRITE_ONCE(parent->rb_right, tmp1);
|
|---|
| 257 | WRITE_ONCE(sibling->rb_left, parent);
|
|---|
| 258 | rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|---|
| 259 | __rb_rotate_set_parents(parent, sibling, root,
|
|---|
| 260 | RB_RED);
|
|---|
| 261 | augment_rotate(parent, sibling);
|
|---|
| 262 | sibling = tmp1;
|
|---|
| 263 | }
|
|---|
| 264 | tmp1 = sibling->rb_right;
|
|---|
| 265 | if (!tmp1 || rb_is_black(tmp1)) {
|
|---|
| 266 | tmp2 = sibling->rb_left;
|
|---|
| 267 | if (!tmp2 || rb_is_black(tmp2)) {
|
|---|
| 268 | /*
|
|---|
| 269 | * Case 2 - sibling color flip
|
|---|
| 270 | * (p could be either color here)
|
|---|
| 271 | *
|
|---|
| 272 | * (p) (p)
|
|---|
| 273 | * / \ / \
|
|---|
| 274 | * N S --> N s
|
|---|
| 275 | * / \ / \
|
|---|
| 276 | * Sl Sr Sl Sr
|
|---|
| 277 | *
|
|---|
| 278 | * This leaves us violating 5) which
|
|---|
| 279 | * can be fixed by flipping p to black
|
|---|
| 280 | * if it was red, or by recursing at p.
|
|---|
| 281 | * p is red when coming from Case 1.
|
|---|
| 282 | */
|
|---|
| 283 | rb_set_parent_color(sibling, parent,
|
|---|
| 284 | RB_RED);
|
|---|
| 285 | if (rb_is_red(parent))
|
|---|
| 286 | rb_set_black(parent);
|
|---|
| 287 | else {
|
|---|
| 288 | node = parent;
|
|---|
| 289 | parent = rb_parent(node);
|
|---|
| 290 | if (parent)
|
|---|
| 291 | continue;
|
|---|
| 292 | }
|
|---|
| 293 | break;
|
|---|
| 294 | }
|
|---|
| 295 | /*
|
|---|
| 296 | * Case 3 - right rotate at sibling
|
|---|
| 297 | * (p could be either color here)
|
|---|
| 298 | *
|
|---|
| 299 | * (p) (p)
|
|---|
| 300 | * / \ / \
|
|---|
| 301 | * N S --> N sl
|
|---|
| 302 | * / \ \
|
|---|
| 303 | * sl Sr S
|
|---|
| 304 | * \
|
|---|
| 305 | * Sr
|
|---|
| 306 | *
|
|---|
| 307 | * Note: p might be red, and then both
|
|---|
| 308 | * p and sl are red after rotation(which
|
|---|
| 309 | * breaks property 4). This is fixed in
|
|---|
| 310 | * Case 4 (in __rb_rotate_set_parents()
|
|---|
| 311 | * which set sl the color of p
|
|---|
| 312 | * and set p RB_BLACK)
|
|---|
| 313 | *
|
|---|
| 314 | * (p) (sl)
|
|---|
| 315 | * / \ / \
|
|---|
| 316 | * N sl --> P S
|
|---|
| 317 | * \ / \
|
|---|
| 318 | * S N Sr
|
|---|
| 319 | * \
|
|---|
| 320 | * Sr
|
|---|
| 321 | */
|
|---|
| 322 | tmp1 = tmp2->rb_right;
|
|---|
| 323 | WRITE_ONCE(sibling->rb_left, tmp1);
|
|---|
| 324 | WRITE_ONCE(tmp2->rb_right, sibling);
|
|---|
| 325 | WRITE_ONCE(parent->rb_right, tmp2);
|
|---|
| 326 | if (tmp1)
|
|---|
| 327 | rb_set_parent_color(tmp1, sibling,
|
|---|
| 328 | RB_BLACK);
|
|---|
| 329 | augment_rotate(sibling, tmp2);
|
|---|
| 330 | tmp1 = sibling;
|
|---|
| 331 | sibling = tmp2;
|
|---|
| 332 | }
|
|---|
| 333 | /*
|
|---|
| 334 | * Case 4 - left rotate at parent + color flips
|
|---|
| 335 | * (p and sl could be either color here.
|
|---|
| 336 | * After rotation, p becomes black, s acquires
|
|---|
| 337 | * p's color, and sl keeps its color)
|
|---|
| 338 | *
|
|---|
| 339 | * (p) (s)
|
|---|
| 340 | * / \ / \
|
|---|
| 341 | * N S --> P Sr
|
|---|
| 342 | * / \ / \
|
|---|
| 343 | * (sl) sr N (sl)
|
|---|
| 344 | */
|
|---|
| 345 | tmp2 = sibling->rb_left;
|
|---|
| 346 | WRITE_ONCE(parent->rb_right, tmp2);
|
|---|
| 347 | WRITE_ONCE(sibling->rb_left, parent);
|
|---|
| 348 | rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|---|
| 349 | if (tmp2)
|
|---|
| 350 | rb_set_parent(tmp2, parent);
|
|---|
| 351 | __rb_rotate_set_parents(parent, sibling, root,
|
|---|
| 352 | RB_BLACK);
|
|---|
| 353 | augment_rotate(parent, sibling);
|
|---|
| 354 | break;
|
|---|
| 355 | } else {
|
|---|
| 356 | sibling = parent->rb_left;
|
|---|
| 357 | if (rb_is_red(sibling)) {
|
|---|
| 358 | /* Case 1 - right rotate at parent */
|
|---|
| 359 | tmp1 = sibling->rb_right;
|
|---|
| 360 | WRITE_ONCE(parent->rb_left, tmp1);
|
|---|
| 361 | WRITE_ONCE(sibling->rb_right, parent);
|
|---|
| 362 | rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|---|
| 363 | __rb_rotate_set_parents(parent, sibling, root,
|
|---|
| 364 | RB_RED);
|
|---|
| 365 | augment_rotate(parent, sibling);
|
|---|
| 366 | sibling = tmp1;
|
|---|
| 367 | }
|
|---|
| 368 | tmp1 = sibling->rb_left;
|
|---|
| 369 | if (!tmp1 || rb_is_black(tmp1)) {
|
|---|
| 370 | tmp2 = sibling->rb_right;
|
|---|
| 371 | if (!tmp2 || rb_is_black(tmp2)) {
|
|---|
| 372 | /* Case 2 - sibling color flip */
|
|---|
| 373 | rb_set_parent_color(sibling, parent,
|
|---|
| 374 | RB_RED);
|
|---|
| 375 | if (rb_is_red(parent))
|
|---|
| 376 | rb_set_black(parent);
|
|---|
| 377 | else {
|
|---|
| 378 | node = parent;
|
|---|
| 379 | parent = rb_parent(node);
|
|---|
| 380 | if (parent)
|
|---|
| 381 | continue;
|
|---|
| 382 | }
|
|---|
| 383 | break;
|
|---|
| 384 | }
|
|---|
| 385 | /* Case 3 - left rotate at sibling */
|
|---|
| 386 | tmp1 = tmp2->rb_left;
|
|---|
| 387 | WRITE_ONCE(sibling->rb_right, tmp1);
|
|---|
| 388 | WRITE_ONCE(tmp2->rb_left, sibling);
|
|---|
| 389 | WRITE_ONCE(parent->rb_left, tmp2);
|
|---|
| 390 | if (tmp1)
|
|---|
| 391 | rb_set_parent_color(tmp1, sibling,
|
|---|
| 392 | RB_BLACK);
|
|---|
| 393 | augment_rotate(sibling, tmp2);
|
|---|
| 394 | tmp1 = sibling;
|
|---|
| 395 | sibling = tmp2;
|
|---|
| 396 | }
|
|---|
| 397 | /* Case 4 - right rotate at parent + color flips */
|
|---|
| 398 | tmp2 = sibling->rb_right;
|
|---|
| 399 | WRITE_ONCE(parent->rb_left, tmp2);
|
|---|
| 400 | WRITE_ONCE(sibling->rb_right, parent);
|
|---|
| 401 | rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|---|
| 402 | if (tmp2)
|
|---|
| 403 | rb_set_parent(tmp2, parent);
|
|---|
| 404 | __rb_rotate_set_parents(parent, sibling, root,
|
|---|
| 405 | RB_BLACK);
|
|---|
| 406 | augment_rotate(parent, sibling);
|
|---|
| 407 | break;
|
|---|
| 408 | }
|
|---|
| 409 | }
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | /* Non-inline version for rb_erase_augmented() use */
|
|---|
| 413 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|---|
| 414 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|---|
| 415 | {
|
|---|
| 416 | ____rb_erase_color(parent, root, augment_rotate);
|
|---|
| 417 | }
|
|---|
| 418 | EXPORT_SYMBOL(__rb_erase_color);
|
|---|
| 419 |
|
|---|
| 420 | /*
|
|---|
| 421 | * Non-augmented rbtree manipulation functions.
|
|---|
| 422 | *
|
|---|
| 423 | * We use dummy augmented callbacks here, and have the compiler optimize them
|
|---|
| 424 | * out of the rb_insert_color() and rb_erase() function definitions.
|
|---|
| 425 | */
|
|---|
| 426 |
|
|---|
| 427 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
|
|---|
| 428 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
|
|---|
| 429 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
|
|---|
| 430 |
|
|---|
| 431 | static const struct rb_augment_callbacks dummy_callbacks = {
|
|---|
| 432 | .propagate = dummy_propagate,
|
|---|
| 433 | .copy = dummy_copy,
|
|---|
| 434 | .rotate = dummy_rotate
|
|---|
| 435 | };
|
|---|
| 436 |
|
|---|
| 437 | void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
|---|
| 438 | {
|
|---|
| 439 | __rb_insert(node, root, dummy_rotate);
|
|---|
| 440 | }
|
|---|
| 441 | EXPORT_SYMBOL(rb_insert_color);
|
|---|
| 442 |
|
|---|
| 443 | void rb_erase(struct rb_node *node, struct rb_root *root)
|
|---|
| 444 | {
|
|---|
| 445 | struct rb_node *rebalance;
|
|---|
| 446 | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
|
|---|
| 447 | if (rebalance)
|
|---|
| 448 | ____rb_erase_color(rebalance, root, dummy_rotate);
|
|---|
| 449 | }
|
|---|
| 450 | EXPORT_SYMBOL(rb_erase);
|
|---|
| 451 |
|
|---|
| 452 | /*
|
|---|
| 453 | * Augmented rbtree manipulation functions.
|
|---|
| 454 | *
|
|---|
| 455 | * This instantiates the same inline functions as in the non-augmented
|
|---|
| 456 | * case, but this time with user-defined callbacks.
|
|---|
| 457 | */
|
|---|
| 458 |
|
|---|
| 459 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
|---|
| 460 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|---|
| 461 | {
|
|---|
| 462 | __rb_insert(node, root, augment_rotate);
|
|---|
| 463 | }
|
|---|
| 464 | EXPORT_SYMBOL(__rb_insert_augmented);
|
|---|
| 465 |
|
|---|
| 466 | /*
|
|---|
| 467 | * This function returns the first node (in sort order) of the tree.
|
|---|
| 468 | */
|
|---|
| 469 | struct rb_node *rb_first(const struct rb_root *root)
|
|---|
| 470 | {
|
|---|
| 471 | struct rb_node *n;
|
|---|
| 472 |
|
|---|
| 473 | n = root->rb_node;
|
|---|
| 474 | if (!n)
|
|---|
| 475 | return NULL;
|
|---|
| 476 | while (n->rb_left)
|
|---|
| 477 | n = n->rb_left;
|
|---|
| 478 | return n;
|
|---|
| 479 | }
|
|---|
| 480 | EXPORT_SYMBOL(rb_first);
|
|---|
| 481 |
|
|---|
| 482 | struct rb_node *rb_last(const struct rb_root *root)
|
|---|
| 483 | {
|
|---|
| 484 | struct rb_node *n;
|
|---|
| 485 |
|
|---|
| 486 | n = root->rb_node;
|
|---|
| 487 | if (!n)
|
|---|
| 488 | return NULL;
|
|---|
| 489 | while (n->rb_right)
|
|---|
| 490 | n = n->rb_right;
|
|---|
| 491 | return n;
|
|---|
| 492 | }
|
|---|
| 493 | EXPORT_SYMBOL(rb_last);
|
|---|
| 494 |
|
|---|
| 495 | struct rb_node *rb_next(const struct rb_node *node)
|
|---|
| 496 | {
|
|---|
| 497 | struct rb_node *parent;
|
|---|
| 498 |
|
|---|
| 499 | if (RB_EMPTY_NODE(node))
|
|---|
| 500 | return NULL;
|
|---|
| 501 |
|
|---|
| 502 | /*
|
|---|
| 503 | * If we have a right-hand child, go down and then left as far
|
|---|
| 504 | * as we can.
|
|---|
| 505 | */
|
|---|
| 506 | if (node->rb_right) {
|
|---|
| 507 | node = node->rb_right;
|
|---|
| 508 | while (node->rb_left)
|
|---|
| 509 | node = node->rb_left;
|
|---|
| 510 | return (struct rb_node *)node;
|
|---|
| 511 | }
|
|---|
| 512 |
|
|---|
| 513 | /*
|
|---|
| 514 | * No right-hand children. Everything down and left is smaller than us,
|
|---|
| 515 | * so any 'next' node must be in the general direction of our parent.
|
|---|
| 516 | * Go up the tree; any time the ancestor is a right-hand child of its
|
|---|
| 517 | * parent, keep going up. First time it's a left-hand child of its
|
|---|
| 518 | * parent, said parent is our 'next' node.
|
|---|
| 519 | */
|
|---|
| 520 | while ((parent = rb_parent(node)) && node == parent->rb_right)
|
|---|
| 521 | node = parent;
|
|---|
| 522 |
|
|---|
| 523 | return parent;
|
|---|
| 524 | }
|
|---|
| 525 | EXPORT_SYMBOL(rb_next);
|
|---|
| 526 |
|
|---|
| 527 | struct rb_node *rb_prev(const struct rb_node *node)
|
|---|
| 528 | {
|
|---|
| 529 | struct rb_node *parent;
|
|---|
| 530 |
|
|---|
| 531 | if (RB_EMPTY_NODE(node))
|
|---|
| 532 | return NULL;
|
|---|
| 533 |
|
|---|
| 534 | /*
|
|---|
| 535 | * If we have a left-hand child, go down and then right as far
|
|---|
| 536 | * as we can.
|
|---|
| 537 | */
|
|---|
| 538 | if (node->rb_left) {
|
|---|
| 539 | node = node->rb_left;
|
|---|
| 540 | while (node->rb_right)
|
|---|
| 541 | node = node->rb_right;
|
|---|
| 542 | return (struct rb_node *)node;
|
|---|
| 543 | }
|
|---|
| 544 |
|
|---|
| 545 | /*
|
|---|
| 546 | * No left-hand children. Go up till we find an ancestor which
|
|---|
| 547 | * is a right-hand child of its parent.
|
|---|
| 548 | */
|
|---|
| 549 | while ((parent = rb_parent(node)) && node == parent->rb_left)
|
|---|
| 550 | node = parent;
|
|---|
| 551 |
|
|---|
| 552 | return parent;
|
|---|
| 553 | }
|
|---|
| 554 | EXPORT_SYMBOL(rb_prev);
|
|---|
| 555 |
|
|---|
| 556 | void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
|---|
| 557 | struct rb_root *root)
|
|---|
| 558 | {
|
|---|
| 559 | struct rb_node *parent = rb_parent(victim);
|
|---|
| 560 |
|
|---|
| 561 | /* Copy the pointers/colour from the victim to the replacement */
|
|---|
| 562 | *new = *victim;
|
|---|
| 563 |
|
|---|
| 564 | /* Set the surrounding nodes to point to the replacement */
|
|---|
| 565 | if (victim->rb_left)
|
|---|
| 566 | rb_set_parent(victim->rb_left, new);
|
|---|
| 567 | if (victim->rb_right)
|
|---|
| 568 | rb_set_parent(victim->rb_right, new);
|
|---|
| 569 | __rb_change_child(victim, new, parent, root);
|
|---|
| 570 | }
|
|---|
| 571 | EXPORT_SYMBOL(rb_replace_node);
|
|---|
| 572 |
|
|---|
| 573 | #ifndef TARGET_OS2
|
|---|
| 574 | void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
|
|---|
| 575 | struct rb_root *root)
|
|---|
| 576 | {
|
|---|
| 577 | struct rb_node *parent = rb_parent(victim);
|
|---|
| 578 |
|
|---|
| 579 | /* Copy the pointers/colour from the victim to the replacement */
|
|---|
| 580 | *new = *victim;
|
|---|
| 581 |
|
|---|
| 582 | /* Set the surrounding nodes to point to the replacement */
|
|---|
| 583 | if (victim->rb_left)
|
|---|
| 584 | rb_set_parent(victim->rb_left, new);
|
|---|
| 585 | if (victim->rb_right)
|
|---|
| 586 | rb_set_parent(victim->rb_right, new);
|
|---|
| 587 |
|
|---|
| 588 | /* Set the parent's pointer to the new node last after an RCU barrier
|
|---|
| 589 | * so that the pointers onwards are seen to be set correctly when doing
|
|---|
| 590 | * an RCU walk over the tree.
|
|---|
| 591 | */
|
|---|
| 592 | __rb_change_child_rcu(victim, new, parent, root);
|
|---|
| 593 | }
|
|---|
| 594 | EXPORT_SYMBOL(rb_replace_node_rcu);
|
|---|
| 595 | #endif
|
|---|
| 596 |
|
|---|
| 597 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
|
|---|
| 598 | {
|
|---|
| 599 | for (;;) {
|
|---|
| 600 | if (node->rb_left)
|
|---|
| 601 | node = node->rb_left;
|
|---|
| 602 | else if (node->rb_right)
|
|---|
| 603 | node = node->rb_right;
|
|---|
| 604 | else
|
|---|
| 605 | return (struct rb_node *)node;
|
|---|
| 606 | }
|
|---|
| 607 | }
|
|---|
| 608 |
|
|---|
| 609 | struct rb_node *rb_next_postorder(const struct rb_node *node)
|
|---|
| 610 | {
|
|---|
| 611 | const struct rb_node *parent;
|
|---|
| 612 | if (!node)
|
|---|
| 613 | return NULL;
|
|---|
| 614 | parent = rb_parent(node);
|
|---|
| 615 |
|
|---|
| 616 | /* If we're sitting on node, we've already seen our children */
|
|---|
| 617 | if (parent && node == parent->rb_left && parent->rb_right) {
|
|---|
| 618 | /* If we are the parent's left node, go to the parent's right
|
|---|
| 619 | * node then all the way down to the left */
|
|---|
| 620 | return rb_left_deepest_node(parent->rb_right);
|
|---|
| 621 | } else
|
|---|
| 622 | /* Otherwise we are the parent's right node, and the parent
|
|---|
| 623 | * should be next */
|
|---|
| 624 | return (struct rb_node *)parent;
|
|---|
| 625 | }
|
|---|
| 626 | EXPORT_SYMBOL(rb_next_postorder);
|
|---|
| 627 |
|
|---|
| 628 | struct rb_node *rb_first_postorder(const struct rb_root *root)
|
|---|
| 629 | {
|
|---|
| 630 | if (!root->rb_node)
|
|---|
| 631 | return NULL;
|
|---|
| 632 |
|
|---|
| 633 | return rb_left_deepest_node(root->rb_node);
|
|---|
| 634 | }
|
|---|
| 635 | EXPORT_SYMBOL(rb_first_postorder);
|
|---|