source: GPL/include/asm/pgtable.h@ 18

Last change on this file since 18 was 18, checked in by vladest, 20 years ago

initial import

File size: 10.1 KB
Line 
1#ifndef _I386_PGTABLE_H
2#define _I386_PGTABLE_H
3
4#include <linux/config.h>
5
6/*
7 * The Linux memory management assumes a three-level page table setup. On
8 * the i386, we use that, but "fold" the mid level into the top-level page
9 * table, so that we physically have the same two-level page table as the
10 * i386 mmu expects.
11 *
12 * This file contains the functions and defines necessary to modify and use
13 * the i386 page table tree.
14 */
15#ifndef __ASSEMBLY__
16#include <asm/processor.h>
17#include <asm/fixmap.h>
18#include <linux/threads.h>
19
20extern pgd_t swapper_pg_dir[1024];
21
22/* Caches aren't brain-dead on the intel. */
23#define flush_cache_all() do { } while (0)
24#define flush_cache_mm(mm) do { } while (0)
25#define flush_cache_range(mm, start, end) do { } while (0)
26#define flush_cache_page(vma, vmaddr) do { } while (0)
27#define flush_page_to_ram(page) do { } while (0)
28#define flush_icache_range(start, end) do { } while (0)
29
30/*
31 * TLB flushing:
32 *
33 * - flush_tlb() flushes the current mm struct TLBs
34 * - flush_tlb_all() flushes all processes TLBs
35 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
36 * - flush_tlb_page(vma, vmaddr) flushes one page
37 * - flush_tlb_range(mm, start, end) flushes a range of pages
38 *
39 * ..but the i386 has somewhat limited tlb flushing capabilities,
40 * and page-granular flushes are available only on i486 and up.
41 */
42
43#define __flush_tlb() \
44do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)
45
46
47#endif /* !__ASSEMBLY__ */
48
49#define pgd_quicklist (current_cpu_data.pgd_quick)
50#define pmd_quicklist (current_cpu_data.pmd_quick)
51#define pte_quicklist (current_cpu_data.pte_quick)
52#define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
53
54/*
55 * The Linux x86 paging architecture is 'compile-time dual-mode', it
56 * implements both the traditional 2-level x86 page tables and the
57 * newer 3-level PAE-mode page tables.
58 */
59#ifndef __ASSEMBLY__
60#endif
61
62/*
63 * Certain architectures need to do special things when PTEs
64 * within a page table are directly modified. Thus, the following
65 * hook is made available.
66 */
67#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
68
69#define __beep() asm("movb $0x3,%al; outb %al,$0x61")
70
71#define PMD_SIZE (1UL << PMD_SHIFT)
72#define PMD_MASK (~(PMD_SIZE-1))
73#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74#define PGDIR_MASK (~(PGDIR_SIZE-1))
75
76#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
77
78#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
79#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
80
81#define TWOLEVEL_PGDIR_SHIFT 22
82#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
83#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
84
85
86#ifndef __ASSEMBLY__
87/* Just any arbitrary offset to the start of the vmalloc VM area: the
88 * current 8MB value just means that there will be a 8MB "hole" after the
89 * physical memory until the kernel virtual memory starts. That means that
90 * any out-of-bounds memory accesses will hopefully be caught.
91 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
92 * area for the same reason. ;)
93 */
94#define VMALLOC_OFFSET (8*1024*1024)
95#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
96#define VMALLOC_VMADDR(x) ((unsigned long)(x))
97#define VMALLOC_END (FIXADDR_START)
98
99/*
100 * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
101 * of the Pentium details, but assuming intel did the straightforward
102 * thing, this bit set in the page directory entry just means that
103 * the page directory entry points directly to a 4MB-aligned block of
104 * memory.
105 */
106#define _PAGE_PRESENT 0x001
107#define _PAGE_RW 0x002
108#define _PAGE_USER 0x004
109#define _PAGE_PWT 0x008
110#define _PAGE_PCD 0x010
111#define _PAGE_ACCESSED 0x020
112#define _PAGE_DIRTY 0x040
113#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
114#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
115
116#define _PAGE_PROTNONE 0x080 /* If not present */
117
118#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
119#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
120#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
121
122#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
123#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
124#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
125#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
126#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
127#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
128
129/*
130 * The i386 can't do page protection for execute, and considers that the same are read.
131 * Also, write permissions imply read permissions. This is the closest we can get..
132 */
133#define __P000 PAGE_NONE
134#define __P001 PAGE_READONLY
135#define __P010 PAGE_COPY
136#define __P011 PAGE_COPY
137#define __P100 PAGE_READONLY
138#define __P101 PAGE_READONLY
139#define __P110 PAGE_COPY
140#define __P111 PAGE_COPY
141
142#define __S000 PAGE_NONE
143#define __S001 PAGE_READONLY
144#define __S010 PAGE_SHARED
145#define __S011 PAGE_SHARED
146#define __S100 PAGE_READONLY
147#define __S101 PAGE_READONLY
148#define __S110 PAGE_SHARED
149#define __S111 PAGE_SHARED
150
151/*
152 * Define this if things work differently on an i386 and an i486:
153 * it will (on an i486) warn about kernel memory accesses that are
154 * done without a 'verify_area(VERIFY_WRITE,..)'
155 */
156#undef TEST_VERIFY_AREA
157
158/* page table for 0-4MB for everybody */
159extern unsigned long pg0[1024];
160
161/*
162 * ZERO_PAGE is a global shared page that is always zero: used
163 * for zero-mapped memory areas etc..
164 */
165extern unsigned long empty_zero_page[1024];
166#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
167
168/*
169 * Handling allocation failures during page table setup.
170 */
171extern void __handle_bad_pmd(pmd_t * pmd);
172extern void __handle_bad_pmd_kernel(pmd_t * pmd);
173
174#define pte_none(x) (!pte_val(x))
175#define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
176#define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
177#define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PAGE_SHIFT)))
178
179#define pmd_none(x) (!pmd_val(x))
180#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
181#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
182#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
183
184/*
185 * Permanent address of a page. Obviously must never be
186 * called on a highmem page.
187 */
188#define page_address(page) page
189#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
190#define pte_page(x) (mem_map+pte_pagenr(x))
191
192/*
193 * The following only work if pte_present() is true.
194 * Undefined behaviour if not..
195 */
196#if 0
197#define pte_read(pte) (pte_val(pte) & _PAGE_USER)
198#define pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
199extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
200extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
201extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
202
203extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
204extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
205extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
206extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
207extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
208extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
209extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
210extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
211extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
212extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
213#endif
214
215/*
216 * Conversion functions: convert a page and protection to a page entry,
217 * and a page entry and page directory to the page they refer to.
218 */
219
220
221/* This takes a physical page address that is used by the remapping functions */
222#define mk_pte_phys(physpage, pgprot) \
223({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
224
225//extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
226//{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
227
228#define page_pte(page) page_pte_prot(page, __pgprot(0))
229
230#define pmd_page(pmd) \
231((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
232
233/* to find an entry in a page-table-directory. */
234#define __pgd_offset(address) \
235 ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
236
237#define pgd_offset(mm, address) ((mm)->pgd+__pgd_offset(address))
238
239/* to find an entry in a kernel page-table-directory */
240#define pgd_offset_k(address) pgd_offset(&init_mm, address)
241
242#define __pmd_offset(address) \
243 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
244
245/* Find an entry in the third-level page table.. */
246#define __pte_offset(address) \
247 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
248#define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \
249 __pte_offset(address))
250
251
252#if 0
253/*
254 * The i386 doesn't have any external MMU info: the kernel page
255 * tables contain all the necessary information.
256 */
257extern inline void update_mmu_cache(struct vm_area_struct * vma,
258 unsigned long address, pte_t pte)
259{
260}
261#endif
262
263/* Encode and de-code a swap entry */
264#define SWP_TYPE(x) (((x).val >> 1) & 0x3f)
265#define SWP_OFFSET(x) ((x).val >> 8)
266#define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
267#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
268#define swp_entry_to_pte(x) ((pte_t) { (x).val })
269
270#define module_map vmalloc
271#define module_unmap vfree
272
273#endif /* !__ASSEMBLY__ */
274
275/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
276#define PageSkip(page) (0)
277#define kern_addr_valid(addr) (1)
278
279#define io_remap_page_range remap_page_range
280
281#endif /* _I386_PGTABLE_H */
Note: See TracBrowser for help on using the repository browser.