1 | #ifndef _I386_PGTABLE_H
|
---|
2 | #define _I386_PGTABLE_H
|
---|
3 |
|
---|
4 | #include <linux/config.h>
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * The Linux memory management assumes a three-level page table setup. On
|
---|
8 | * the i386, we use that, but "fold" the mid level into the top-level page
|
---|
9 | * table, so that we physically have the same two-level page table as the
|
---|
10 | * i386 mmu expects.
|
---|
11 | *
|
---|
12 | * This file contains the functions and defines necessary to modify and use
|
---|
13 | * the i386 page table tree.
|
---|
14 | */
|
---|
15 | #ifndef __ASSEMBLY__
|
---|
16 | #include <asm/processor.h>
|
---|
17 | #include <asm/fixmap.h>
|
---|
18 | #include <linux/threads.h>
|
---|
19 |
|
---|
20 | extern pgd_t swapper_pg_dir[1024];
|
---|
21 |
|
---|
22 | /* Caches aren't brain-dead on the intel. */
|
---|
23 | #define flush_cache_all() do { } while (0)
|
---|
24 | #define flush_cache_mm(mm) do { } while (0)
|
---|
25 | #define flush_cache_range(mm, start, end) do { } while (0)
|
---|
26 | #define flush_cache_page(vma, vmaddr) do { } while (0)
|
---|
27 | #define flush_page_to_ram(page) do { } while (0)
|
---|
28 | #define flush_icache_range(start, end) do { } while (0)
|
---|
29 |
|
---|
30 | /*
|
---|
31 | * TLB flushing:
|
---|
32 | *
|
---|
33 | * - flush_tlb() flushes the current mm struct TLBs
|
---|
34 | * - flush_tlb_all() flushes all processes TLBs
|
---|
35 | * - flush_tlb_mm(mm) flushes the specified mm context TLB's
|
---|
36 | * - flush_tlb_page(vma, vmaddr) flushes one page
|
---|
37 | * - flush_tlb_range(mm, start, end) flushes a range of pages
|
---|
38 | *
|
---|
39 | * ..but the i386 has somewhat limited tlb flushing capabilities,
|
---|
40 | * and page-granular flushes are available only on i486 and up.
|
---|
41 | */
|
---|
42 |
|
---|
43 | #define __flush_tlb() \
|
---|
44 | do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)
|
---|
45 |
|
---|
46 |
|
---|
47 | #endif /* !__ASSEMBLY__ */
|
---|
48 |
|
---|
49 | #define pgd_quicklist (current_cpu_data.pgd_quick)
|
---|
50 | #define pmd_quicklist (current_cpu_data.pmd_quick)
|
---|
51 | #define pte_quicklist (current_cpu_data.pte_quick)
|
---|
52 | #define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
|
---|
53 |
|
---|
54 | /*
|
---|
55 | * The Linux x86 paging architecture is 'compile-time dual-mode', it
|
---|
56 | * implements both the traditional 2-level x86 page tables and the
|
---|
57 | * newer 3-level PAE-mode page tables.
|
---|
58 | */
|
---|
59 | #ifndef __ASSEMBLY__
|
---|
60 | #endif
|
---|
61 |
|
---|
62 | /*
|
---|
63 | * Certain architectures need to do special things when PTEs
|
---|
64 | * within a page table are directly modified. Thus, the following
|
---|
65 | * hook is made available.
|
---|
66 | */
|
---|
67 | #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
|
---|
68 |
|
---|
69 | #define __beep() asm("movb $0x3,%al; outb %al,$0x61")
|
---|
70 |
|
---|
71 | #define PMD_SIZE (1UL << PMD_SHIFT)
|
---|
72 | #define PMD_MASK (~(PMD_SIZE-1))
|
---|
73 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
---|
74 | #define PGDIR_MASK (~(PGDIR_SIZE-1))
|
---|
75 |
|
---|
76 | #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
|
---|
77 |
|
---|
78 | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
|
---|
79 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
|
---|
80 |
|
---|
81 | #define TWOLEVEL_PGDIR_SHIFT 22
|
---|
82 | #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
|
---|
83 | #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
|
---|
84 |
|
---|
85 |
|
---|
86 | #ifndef __ASSEMBLY__
|
---|
87 | /* Just any arbitrary offset to the start of the vmalloc VM area: the
|
---|
88 | * current 8MB value just means that there will be a 8MB "hole" after the
|
---|
89 | * physical memory until the kernel virtual memory starts. That means that
|
---|
90 | * any out-of-bounds memory accesses will hopefully be caught.
|
---|
91 | * The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
---|
92 | * area for the same reason. ;)
|
---|
93 | */
|
---|
94 | #define VMALLOC_OFFSET (8*1024*1024)
|
---|
95 | #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
|
---|
96 | #define VMALLOC_VMADDR(x) ((unsigned long)(x))
|
---|
97 | #define VMALLOC_END (FIXADDR_START)
|
---|
98 |
|
---|
99 | /*
|
---|
100 | * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
|
---|
101 | * of the Pentium details, but assuming intel did the straightforward
|
---|
102 | * thing, this bit set in the page directory entry just means that
|
---|
103 | * the page directory entry points directly to a 4MB-aligned block of
|
---|
104 | * memory.
|
---|
105 | */
|
---|
106 | #define _PAGE_PRESENT 0x001
|
---|
107 | #define _PAGE_RW 0x002
|
---|
108 | #define _PAGE_USER 0x004
|
---|
109 | #define _PAGE_PWT 0x008
|
---|
110 | #define _PAGE_PCD 0x010
|
---|
111 | #define _PAGE_ACCESSED 0x020
|
---|
112 | #define _PAGE_DIRTY 0x040
|
---|
113 | #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
|
---|
114 | #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
|
---|
115 |
|
---|
116 | #define _PAGE_PROTNONE 0x080 /* If not present */
|
---|
117 |
|
---|
118 | #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
|
---|
119 | #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
|
---|
120 | #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
---|
121 |
|
---|
122 | #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
|
---|
123 | #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
|
---|
124 | #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
|
---|
125 | #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
|
---|
126 | #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
|
---|
127 | #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
|
---|
128 |
|
---|
129 | /*
|
---|
130 | * The i386 can't do page protection for execute, and considers that the same are read.
|
---|
131 | * Also, write permissions imply read permissions. This is the closest we can get..
|
---|
132 | */
|
---|
133 | #define __P000 PAGE_NONE
|
---|
134 | #define __P001 PAGE_READONLY
|
---|
135 | #define __P010 PAGE_COPY
|
---|
136 | #define __P011 PAGE_COPY
|
---|
137 | #define __P100 PAGE_READONLY
|
---|
138 | #define __P101 PAGE_READONLY
|
---|
139 | #define __P110 PAGE_COPY
|
---|
140 | #define __P111 PAGE_COPY
|
---|
141 |
|
---|
142 | #define __S000 PAGE_NONE
|
---|
143 | #define __S001 PAGE_READONLY
|
---|
144 | #define __S010 PAGE_SHARED
|
---|
145 | #define __S011 PAGE_SHARED
|
---|
146 | #define __S100 PAGE_READONLY
|
---|
147 | #define __S101 PAGE_READONLY
|
---|
148 | #define __S110 PAGE_SHARED
|
---|
149 | #define __S111 PAGE_SHARED
|
---|
150 |
|
---|
151 | /*
|
---|
152 | * Define this if things work differently on an i386 and an i486:
|
---|
153 | * it will (on an i486) warn about kernel memory accesses that are
|
---|
154 | * done without a 'verify_area(VERIFY_WRITE,..)'
|
---|
155 | */
|
---|
156 | #undef TEST_VERIFY_AREA
|
---|
157 |
|
---|
158 | /* page table for 0-4MB for everybody */
|
---|
159 | extern unsigned long pg0[1024];
|
---|
160 |
|
---|
161 | /*
|
---|
162 | * ZERO_PAGE is a global shared page that is always zero: used
|
---|
163 | * for zero-mapped memory areas etc..
|
---|
164 | */
|
---|
165 | extern unsigned long empty_zero_page[1024];
|
---|
166 | #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
|
---|
167 |
|
---|
168 | /*
|
---|
169 | * Handling allocation failures during page table setup.
|
---|
170 | */
|
---|
171 | extern void __handle_bad_pmd(pmd_t * pmd);
|
---|
172 | extern void __handle_bad_pmd_kernel(pmd_t * pmd);
|
---|
173 |
|
---|
174 | #define pte_none(x) (!pte_val(x))
|
---|
175 | #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
|
---|
176 | #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
|
---|
177 | #define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PAGE_SHIFT)))
|
---|
178 |
|
---|
179 | #define pmd_none(x) (!pmd_val(x))
|
---|
180 | #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
|
---|
181 | #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
|
---|
182 | #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
|
---|
183 |
|
---|
184 | /*
|
---|
185 | * Permanent address of a page. Obviously must never be
|
---|
186 | * called on a highmem page.
|
---|
187 | */
|
---|
188 | #define page_address(page) page
|
---|
189 | #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
|
---|
190 | #define pte_page(x) (mem_map+pte_pagenr(x))
|
---|
191 |
|
---|
192 | /*
|
---|
193 | * The following only work if pte_present() is true.
|
---|
194 | * Undefined behaviour if not..
|
---|
195 | */
|
---|
196 | #if 0
|
---|
197 | #define pte_read(pte) (pte_val(pte) & _PAGE_USER)
|
---|
198 | #define pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
---|
199 | extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
---|
200 | extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
---|
201 | extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
|
---|
202 |
|
---|
203 | extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
|
---|
204 | extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
|
---|
205 | extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
|
---|
206 | extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
---|
207 | extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
|
---|
208 | extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
|
---|
209 | extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
|
---|
210 | extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
---|
211 | extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
---|
212 | extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
|
---|
213 | #endif
|
---|
214 |
|
---|
215 | /*
|
---|
216 | * Conversion functions: convert a page and protection to a page entry,
|
---|
217 | * and a page entry and page directory to the page they refer to.
|
---|
218 | */
|
---|
219 |
|
---|
220 |
|
---|
221 | /* This takes a physical page address that is used by the remapping functions */
|
---|
222 | #define mk_pte_phys(physpage, pgprot) \
|
---|
223 | ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
|
---|
224 |
|
---|
225 | //extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
---|
226 | //{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
|
---|
227 |
|
---|
228 | #define page_pte(page) page_pte_prot(page, __pgprot(0))
|
---|
229 |
|
---|
230 | #define pmd_page(pmd) \
|
---|
231 | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
|
---|
232 |
|
---|
233 | /* to find an entry in a page-table-directory. */
|
---|
234 | #define __pgd_offset(address) \
|
---|
235 | ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
|
---|
236 |
|
---|
237 | #define pgd_offset(mm, address) ((mm)->pgd+__pgd_offset(address))
|
---|
238 |
|
---|
239 | /* to find an entry in a kernel page-table-directory */
|
---|
240 | #define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
---|
241 |
|
---|
242 | #define __pmd_offset(address) \
|
---|
243 | (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
|
---|
244 |
|
---|
245 | /* Find an entry in the third-level page table.. */
|
---|
246 | #define __pte_offset(address) \
|
---|
247 | ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
---|
248 | #define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \
|
---|
249 | __pte_offset(address))
|
---|
250 |
|
---|
251 |
|
---|
252 | #if 0
|
---|
253 | /*
|
---|
254 | * The i386 doesn't have any external MMU info: the kernel page
|
---|
255 | * tables contain all the necessary information.
|
---|
256 | */
|
---|
257 | extern inline void update_mmu_cache(struct vm_area_struct * vma,
|
---|
258 | unsigned long address, pte_t pte)
|
---|
259 | {
|
---|
260 | }
|
---|
261 | #endif
|
---|
262 |
|
---|
263 | /* Encode and de-code a swap entry */
|
---|
264 | #define SWP_TYPE(x) (((x).val >> 1) & 0x3f)
|
---|
265 | #define SWP_OFFSET(x) ((x).val >> 8)
|
---|
266 | #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
|
---|
267 | #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
---|
268 | #define swp_entry_to_pte(x) ((pte_t) { (x).val })
|
---|
269 |
|
---|
270 | #define module_map vmalloc
|
---|
271 | #define module_unmap vfree
|
---|
272 |
|
---|
273 | #endif /* !__ASSEMBLY__ */
|
---|
274 |
|
---|
275 | /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
|
---|
276 | #define PageSkip(page) (0)
|
---|
277 | #define kern_addr_valid(addr) (1)
|
---|
278 |
|
---|
279 | #define io_remap_page_range remap_page_range
|
---|
280 |
|
---|
281 | #endif /* _I386_PGTABLE_H */
|
---|