1 | // SPDX-License-Identifier: GPL-2.0-or-later
|
---|
2 | /*
|
---|
3 | Red Black Trees
|
---|
4 | (C) 1999 Andrea Arcangeli <andrea@suse.de>
|
---|
5 | (C) 2002 David Woodhouse <dwmw2@infradead.org>
|
---|
6 | (C) 2012 Michel Lespinasse <walken@google.com>
|
---|
7 |
|
---|
8 |
|
---|
9 | linux/lib/rbtree.c
|
---|
10 | */
|
---|
11 | /* from 5.10.10 */
|
---|
12 |
|
---|
13 | #include <linux/rbtree_augmented.h>
|
---|
14 | #include <linux/export.h>
|
---|
15 | #include <linux/module.h>
|
---|
16 | #include <linux/printk.h>
|
---|
17 |
|
---|
18 | /*
|
---|
19 | * red-black trees properties: https://en.wikipedia.org/wiki/Rbtree
|
---|
20 | *
|
---|
21 | * 1) A node is either red or black
|
---|
22 | * 2) The root is black
|
---|
23 | * 3) All leaves (NULL) are black
|
---|
24 | * 4) Both children of every red node are black
|
---|
25 | * 5) Every simple path from root to leaves contains the same number
|
---|
26 | * of black nodes.
|
---|
27 | *
|
---|
28 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
---|
29 | * consecutive red nodes in a path and every red node is therefore followed by
|
---|
30 | * a black. So if B is the number of black nodes on every simple path (as per
|
---|
31 | * 5), then the longest possible path due to 4 is 2B.
|
---|
32 | *
|
---|
33 | * We shall indicate color with case, where black nodes are uppercase and red
|
---|
34 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
---|
35 | * parentheses and have some accompanying text comment.
|
---|
36 | */
|
---|
37 |
|
---|
38 | /*
|
---|
39 | * Notes on lockless lookups:
|
---|
40 | *
|
---|
41 | * All stores to the tree structure (rb_left and rb_right) must be done using
|
---|
42 | * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
|
---|
43 | * tree structure as seen in program order.
|
---|
44 | *
|
---|
45 | * These two requirements will allow lockless iteration of the tree -- not
|
---|
46 | * correct iteration mind you, tree rotations are not atomic so a lookup might
|
---|
47 | * miss entire subtrees.
|
---|
48 | *
|
---|
49 | * But they do guarantee that any such traversal will only see valid elements
|
---|
50 | * and that it will indeed complete -- does not get stuck in a loop.
|
---|
51 | *
|
---|
52 | * It also guarantees that if the lookup returns an element it is the 'correct'
|
---|
53 | * one. But not returning an element does _NOT_ mean it's not present.
|
---|
54 | *
|
---|
55 | * NOTE:
|
---|
56 | *
|
---|
57 | * Stores to __rb_parent_color are not important for simple lookups so those
|
---|
58 | * are left undone as of now. Nor did I check for loops involving parent
|
---|
59 | * pointers.
|
---|
60 | */
|
---|
61 |
|
---|
62 | static inline void rb_set_black(struct rb_node *rb)
|
---|
63 | {
|
---|
64 | rb->__rb_parent_color |= RB_BLACK;
|
---|
65 | }
|
---|
66 |
|
---|
67 | static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
---|
68 | {
|
---|
69 | return (struct rb_node *)red->__rb_parent_color;
|
---|
70 | }
|
---|
71 |
|
---|
72 | /*
|
---|
73 | * Helper function for rotations:
|
---|
74 | * - old's parent and color get assigned to new
|
---|
75 | * - old gets assigned new as a parent and 'color' as a color.
|
---|
76 | */
|
---|
77 | static inline void
|
---|
78 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
---|
79 | struct rb_root *root, int color)
|
---|
80 | {
|
---|
81 | struct rb_node *parent = rb_parent(old);
|
---|
82 | new->__rb_parent_color = old->__rb_parent_color;
|
---|
83 | rb_set_parent_color(old, new, color);
|
---|
84 | __rb_change_child(old, new, parent, root);
|
---|
85 | }
|
---|
86 |
|
---|
87 | static inline void
|
---|
88 | __rb_insert(struct rb_node *node, struct rb_root *root,
|
---|
89 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
---|
90 | {
|
---|
91 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
---|
92 |
|
---|
93 | while (true) {
|
---|
94 | /*
|
---|
95 | * Loop invariant: node is red.
|
---|
96 | */
|
---|
97 | if (unlikely(!parent)) {
|
---|
98 | /*
|
---|
99 | * The inserted node is root. Either this is the
|
---|
100 | * first node, or we recursed at Case 1 below and
|
---|
101 | * are no longer violating 4).
|
---|
102 | */
|
---|
103 | rb_set_parent_color(node, NULL, RB_BLACK);
|
---|
104 | break;
|
---|
105 | }
|
---|
106 |
|
---|
107 | /*
|
---|
108 | * If there is a black parent, we are done.
|
---|
109 | * Otherwise, take some corrective action as,
|
---|
110 | * per 4), we don't want a red root or two
|
---|
111 | * consecutive red nodes.
|
---|
112 | */
|
---|
113 | if(rb_is_black(parent))
|
---|
114 | break;
|
---|
115 |
|
---|
116 | gparent = rb_red_parent(parent);
|
---|
117 |
|
---|
118 | tmp = gparent->rb_right;
|
---|
119 | if (parent != tmp) { /* parent == gparent->rb_left */
|
---|
120 | if (tmp && rb_is_red(tmp)) {
|
---|
121 | /*
|
---|
122 | * Case 1 - node's uncle is red (color flips).
|
---|
123 | *
|
---|
124 | * G g
|
---|
125 | * / \ / \
|
---|
126 | * p u --> P U
|
---|
127 | * / /
|
---|
128 | * n n
|
---|
129 | *
|
---|
130 | * However, since g's parent might be red, and
|
---|
131 | * 4) does not allow this, we need to recurse
|
---|
132 | * at g.
|
---|
133 | */
|
---|
134 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
---|
135 | rb_set_parent_color(parent, gparent, RB_BLACK);
|
---|
136 | node = gparent;
|
---|
137 | parent = rb_parent(node);
|
---|
138 | rb_set_parent_color(node, parent, RB_RED);
|
---|
139 | continue;
|
---|
140 | }
|
---|
141 |
|
---|
142 | tmp = parent->rb_right;
|
---|
143 | if (node == tmp) {
|
---|
144 | /*
|
---|
145 | * Case 2 - node's uncle is black and node is
|
---|
146 | * the parent's right child (left rotate at parent).
|
---|
147 | *
|
---|
148 | * G G
|
---|
149 | * / \ / \
|
---|
150 | * p U --> n U
|
---|
151 | * \ /
|
---|
152 | * n p
|
---|
153 | *
|
---|
154 | * This still leaves us in violation of 4), the
|
---|
155 | * continuation into Case 3 will fix that.
|
---|
156 | */
|
---|
157 | tmp = node->rb_left;
|
---|
158 | WRITE_ONCE(parent->rb_right, tmp);
|
---|
159 | WRITE_ONCE(node->rb_left, parent);
|
---|
160 | if (tmp)
|
---|
161 | rb_set_parent_color(tmp, parent,
|
---|
162 | RB_BLACK);
|
---|
163 | rb_set_parent_color(parent, node, RB_RED);
|
---|
164 | augment_rotate(parent, node);
|
---|
165 | parent = node;
|
---|
166 | tmp = node->rb_right;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /*
|
---|
170 | * Case 3 - node's uncle is black and node is
|
---|
171 | * the parent's left child (right rotate at gparent).
|
---|
172 | *
|
---|
173 | * G P
|
---|
174 | * / \ / \
|
---|
175 | * p U --> n g
|
---|
176 | * / \
|
---|
177 | * n U
|
---|
178 | */
|
---|
179 | WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
|
---|
180 | WRITE_ONCE(parent->rb_right, gparent);
|
---|
181 | if (tmp)
|
---|
182 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
---|
183 | __rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
---|
184 | augment_rotate(gparent, parent);
|
---|
185 | break;
|
---|
186 | } else {
|
---|
187 | tmp = gparent->rb_left;
|
---|
188 | if (tmp && rb_is_red(tmp)) {
|
---|
189 | /* Case 1 - color flips */
|
---|
190 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
---|
191 | rb_set_parent_color(parent, gparent, RB_BLACK);
|
---|
192 | node = gparent;
|
---|
193 | parent = rb_parent(node);
|
---|
194 | rb_set_parent_color(node, parent, RB_RED);
|
---|
195 | continue;
|
---|
196 | }
|
---|
197 |
|
---|
198 | tmp = parent->rb_left;
|
---|
199 | if (node == tmp) {
|
---|
200 | /* Case 2 - right rotate at parent */
|
---|
201 | tmp = node->rb_right;
|
---|
202 | WRITE_ONCE(parent->rb_left, tmp);
|
---|
203 | WRITE_ONCE(node->rb_right, parent);
|
---|
204 | if (tmp)
|
---|
205 | rb_set_parent_color(tmp, parent,
|
---|
206 | RB_BLACK);
|
---|
207 | rb_set_parent_color(parent, node, RB_RED);
|
---|
208 | augment_rotate(parent, node);
|
---|
209 | parent = node;
|
---|
210 | tmp = node->rb_left;
|
---|
211 | }
|
---|
212 |
|
---|
213 | /* Case 3 - left rotate at gparent */
|
---|
214 | WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
|
---|
215 | WRITE_ONCE(parent->rb_left, gparent);
|
---|
216 | if (tmp)
|
---|
217 | rb_set_parent_color(tmp, gparent, RB_BLACK);
|
---|
218 | __rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
---|
219 | augment_rotate(gparent, parent);
|
---|
220 | break;
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|
224 |
|
---|
225 | /*
|
---|
226 | * Inline version for rb_erase() use - we want to be able to inline
|
---|
227 | * and eliminate the dummy_rotate callback there
|
---|
228 | */
|
---|
229 | static inline void
|
---|
230 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
---|
231 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
---|
232 | {
|
---|
233 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
|
---|
234 |
|
---|
235 | while (true) {
|
---|
236 | /*
|
---|
237 | * Loop invariants:
|
---|
238 | * - node is black (or NULL on first iteration)
|
---|
239 | * - node is not the root (parent is not NULL)
|
---|
240 | * - All leaf paths going through parent and node have a
|
---|
241 | * black node count that is 1 lower than other leaf paths.
|
---|
242 | */
|
---|
243 | sibling = parent->rb_right;
|
---|
244 | if (node != sibling) { /* node == parent->rb_left */
|
---|
245 | if (rb_is_red(sibling)) {
|
---|
246 | /*
|
---|
247 | * Case 1 - left rotate at parent
|
---|
248 | *
|
---|
249 | * P S
|
---|
250 | * / \ / \
|
---|
251 | * N s --> p Sr
|
---|
252 | * / \ / \
|
---|
253 | * Sl Sr N Sl
|
---|
254 | */
|
---|
255 | tmp1 = sibling->rb_left;
|
---|
256 | WRITE_ONCE(parent->rb_right, tmp1);
|
---|
257 | WRITE_ONCE(sibling->rb_left, parent);
|
---|
258 | rb_set_parent_color(tmp1, parent, RB_BLACK);
|
---|
259 | __rb_rotate_set_parents(parent, sibling, root,
|
---|
260 | RB_RED);
|
---|
261 | augment_rotate(parent, sibling);
|
---|
262 | sibling = tmp1;
|
---|
263 | }
|
---|
264 | tmp1 = sibling->rb_right;
|
---|
265 | if (!tmp1 || rb_is_black(tmp1)) {
|
---|
266 | tmp2 = sibling->rb_left;
|
---|
267 | if (!tmp2 || rb_is_black(tmp2)) {
|
---|
268 | /*
|
---|
269 | * Case 2 - sibling color flip
|
---|
270 | * (p could be either color here)
|
---|
271 | *
|
---|
272 | * (p) (p)
|
---|
273 | * / \ / \
|
---|
274 | * N S --> N s
|
---|
275 | * / \ / \
|
---|
276 | * Sl Sr Sl Sr
|
---|
277 | *
|
---|
278 | * This leaves us violating 5) which
|
---|
279 | * can be fixed by flipping p to black
|
---|
280 | * if it was red, or by recursing at p.
|
---|
281 | * p is red when coming from Case 1.
|
---|
282 | */
|
---|
283 | rb_set_parent_color(sibling, parent,
|
---|
284 | RB_RED);
|
---|
285 | if (rb_is_red(parent))
|
---|
286 | rb_set_black(parent);
|
---|
287 | else {
|
---|
288 | node = parent;
|
---|
289 | parent = rb_parent(node);
|
---|
290 | if (parent)
|
---|
291 | continue;
|
---|
292 | }
|
---|
293 | break;
|
---|
294 | }
|
---|
295 | /*
|
---|
296 | * Case 3 - right rotate at sibling
|
---|
297 | * (p could be either color here)
|
---|
298 | *
|
---|
299 | * (p) (p)
|
---|
300 | * / \ / \
|
---|
301 | * N S --> N sl
|
---|
302 | * / \ \
|
---|
303 | * sl Sr S
|
---|
304 | * \
|
---|
305 | * Sr
|
---|
306 | *
|
---|
307 | * Note: p might be red, and then both
|
---|
308 | * p and sl are red after rotation(which
|
---|
309 | * breaks property 4). This is fixed in
|
---|
310 | * Case 4 (in __rb_rotate_set_parents()
|
---|
311 | * which set sl the color of p
|
---|
312 | * and set p RB_BLACK)
|
---|
313 | *
|
---|
314 | * (p) (sl)
|
---|
315 | * / \ / \
|
---|
316 | * N sl --> P S
|
---|
317 | * \ / \
|
---|
318 | * S N Sr
|
---|
319 | * \
|
---|
320 | * Sr
|
---|
321 | */
|
---|
322 | tmp1 = tmp2->rb_right;
|
---|
323 | WRITE_ONCE(sibling->rb_left, tmp1);
|
---|
324 | WRITE_ONCE(tmp2->rb_right, sibling);
|
---|
325 | WRITE_ONCE(parent->rb_right, tmp2);
|
---|
326 | if (tmp1)
|
---|
327 | rb_set_parent_color(tmp1, sibling,
|
---|
328 | RB_BLACK);
|
---|
329 | augment_rotate(sibling, tmp2);
|
---|
330 | tmp1 = sibling;
|
---|
331 | sibling = tmp2;
|
---|
332 | }
|
---|
333 | /*
|
---|
334 | * Case 4 - left rotate at parent + color flips
|
---|
335 | * (p and sl could be either color here.
|
---|
336 | * After rotation, p becomes black, s acquires
|
---|
337 | * p's color, and sl keeps its color)
|
---|
338 | *
|
---|
339 | * (p) (s)
|
---|
340 | * / \ / \
|
---|
341 | * N S --> P Sr
|
---|
342 | * / \ / \
|
---|
343 | * (sl) sr N (sl)
|
---|
344 | */
|
---|
345 | tmp2 = sibling->rb_left;
|
---|
346 | WRITE_ONCE(parent->rb_right, tmp2);
|
---|
347 | WRITE_ONCE(sibling->rb_left, parent);
|
---|
348 | rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
---|
349 | if (tmp2)
|
---|
350 | rb_set_parent(tmp2, parent);
|
---|
351 | __rb_rotate_set_parents(parent, sibling, root,
|
---|
352 | RB_BLACK);
|
---|
353 | augment_rotate(parent, sibling);
|
---|
354 | break;
|
---|
355 | } else {
|
---|
356 | sibling = parent->rb_left;
|
---|
357 | if (rb_is_red(sibling)) {
|
---|
358 | /* Case 1 - right rotate at parent */
|
---|
359 | tmp1 = sibling->rb_right;
|
---|
360 | WRITE_ONCE(parent->rb_left, tmp1);
|
---|
361 | WRITE_ONCE(sibling->rb_right, parent);
|
---|
362 | rb_set_parent_color(tmp1, parent, RB_BLACK);
|
---|
363 | __rb_rotate_set_parents(parent, sibling, root,
|
---|
364 | RB_RED);
|
---|
365 | augment_rotate(parent, sibling);
|
---|
366 | sibling = tmp1;
|
---|
367 | }
|
---|
368 | tmp1 = sibling->rb_left;
|
---|
369 | if (!tmp1 || rb_is_black(tmp1)) {
|
---|
370 | tmp2 = sibling->rb_right;
|
---|
371 | if (!tmp2 || rb_is_black(tmp2)) {
|
---|
372 | /* Case 2 - sibling color flip */
|
---|
373 | rb_set_parent_color(sibling, parent,
|
---|
374 | RB_RED);
|
---|
375 | if (rb_is_red(parent))
|
---|
376 | rb_set_black(parent);
|
---|
377 | else {
|
---|
378 | node = parent;
|
---|
379 | parent = rb_parent(node);
|
---|
380 | if (parent)
|
---|
381 | continue;
|
---|
382 | }
|
---|
383 | break;
|
---|
384 | }
|
---|
385 | /* Case 3 - left rotate at sibling */
|
---|
386 | tmp1 = tmp2->rb_left;
|
---|
387 | WRITE_ONCE(sibling->rb_right, tmp1);
|
---|
388 | WRITE_ONCE(tmp2->rb_left, sibling);
|
---|
389 | WRITE_ONCE(parent->rb_left, tmp2);
|
---|
390 | if (tmp1)
|
---|
391 | rb_set_parent_color(tmp1, sibling,
|
---|
392 | RB_BLACK);
|
---|
393 | augment_rotate(sibling, tmp2);
|
---|
394 | tmp1 = sibling;
|
---|
395 | sibling = tmp2;
|
---|
396 | }
|
---|
397 | /* Case 4 - right rotate at parent + color flips */
|
---|
398 | tmp2 = sibling->rb_right;
|
---|
399 | WRITE_ONCE(parent->rb_left, tmp2);
|
---|
400 | WRITE_ONCE(sibling->rb_right, parent);
|
---|
401 | rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
---|
402 | if (tmp2)
|
---|
403 | rb_set_parent(tmp2, parent);
|
---|
404 | __rb_rotate_set_parents(parent, sibling, root,
|
---|
405 | RB_BLACK);
|
---|
406 | augment_rotate(parent, sibling);
|
---|
407 | break;
|
---|
408 | }
|
---|
409 | }
|
---|
410 | }
|
---|
411 |
|
---|
412 | /* Non-inline version for rb_erase_augmented() use */
|
---|
413 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
---|
414 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
---|
415 | {
|
---|
416 | ____rb_erase_color(parent, root, augment_rotate);
|
---|
417 | }
|
---|
418 | EXPORT_SYMBOL(__rb_erase_color);
|
---|
419 |
|
---|
420 | /*
|
---|
421 | * Non-augmented rbtree manipulation functions.
|
---|
422 | *
|
---|
423 | * We use dummy augmented callbacks here, and have the compiler optimize them
|
---|
424 | * out of the rb_insert_color() and rb_erase() function definitions.
|
---|
425 | */
|
---|
426 |
|
---|
427 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
|
---|
428 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
|
---|
429 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
|
---|
430 |
|
---|
431 | static const struct rb_augment_callbacks dummy_callbacks = {
|
---|
432 | .propagate = dummy_propagate,
|
---|
433 | .copy = dummy_copy,
|
---|
434 | .rotate = dummy_rotate
|
---|
435 | };
|
---|
436 |
|
---|
437 | void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
---|
438 | {
|
---|
439 | __rb_insert(node, root, dummy_rotate);
|
---|
440 | }
|
---|
441 | EXPORT_SYMBOL(rb_insert_color);
|
---|
442 |
|
---|
443 | void rb_erase(struct rb_node *node, struct rb_root *root)
|
---|
444 | {
|
---|
445 | struct rb_node *rebalance;
|
---|
446 | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
|
---|
447 | if (rebalance)
|
---|
448 | ____rb_erase_color(rebalance, root, dummy_rotate);
|
---|
449 | }
|
---|
450 | EXPORT_SYMBOL(rb_erase);
|
---|
451 |
|
---|
452 | /*
|
---|
453 | * Augmented rbtree manipulation functions.
|
---|
454 | *
|
---|
455 | * This instantiates the same inline functions as in the non-augmented
|
---|
456 | * case, but this time with user-defined callbacks.
|
---|
457 | */
|
---|
458 |
|
---|
459 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
---|
460 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
---|
461 | {
|
---|
462 | __rb_insert(node, root, augment_rotate);
|
---|
463 | }
|
---|
464 | EXPORT_SYMBOL(__rb_insert_augmented);
|
---|
465 |
|
---|
466 | /*
|
---|
467 | * This function returns the first node (in sort order) of the tree.
|
---|
468 | */
|
---|
469 | struct rb_node *rb_first(const struct rb_root *root)
|
---|
470 | {
|
---|
471 | struct rb_node *n;
|
---|
472 |
|
---|
473 | n = root->rb_node;
|
---|
474 | if (!n)
|
---|
475 | return NULL;
|
---|
476 | while (n->rb_left)
|
---|
477 | n = n->rb_left;
|
---|
478 | return n;
|
---|
479 | }
|
---|
480 | EXPORT_SYMBOL(rb_first);
|
---|
481 |
|
---|
482 | struct rb_node *rb_last(const struct rb_root *root)
|
---|
483 | {
|
---|
484 | struct rb_node *n;
|
---|
485 |
|
---|
486 | n = root->rb_node;
|
---|
487 | if (!n)
|
---|
488 | return NULL;
|
---|
489 | while (n->rb_right)
|
---|
490 | n = n->rb_right;
|
---|
491 | return n;
|
---|
492 | }
|
---|
493 | EXPORT_SYMBOL(rb_last);
|
---|
494 |
|
---|
495 | struct rb_node *rb_next(const struct rb_node *node)
|
---|
496 | {
|
---|
497 | struct rb_node *parent;
|
---|
498 |
|
---|
499 | if (RB_EMPTY_NODE(node))
|
---|
500 | return NULL;
|
---|
501 |
|
---|
502 | /*
|
---|
503 | * If we have a right-hand child, go down and then left as far
|
---|
504 | * as we can.
|
---|
505 | */
|
---|
506 | if (node->rb_right) {
|
---|
507 | node = node->rb_right;
|
---|
508 | while (node->rb_left)
|
---|
509 | node = node->rb_left;
|
---|
510 | return (struct rb_node *)node;
|
---|
511 | }
|
---|
512 |
|
---|
513 | /*
|
---|
514 | * No right-hand children. Everything down and left is smaller than us,
|
---|
515 | * so any 'next' node must be in the general direction of our parent.
|
---|
516 | * Go up the tree; any time the ancestor is a right-hand child of its
|
---|
517 | * parent, keep going up. First time it's a left-hand child of its
|
---|
518 | * parent, said parent is our 'next' node.
|
---|
519 | */
|
---|
520 | while ((parent = rb_parent(node)) && node == parent->rb_right)
|
---|
521 | node = parent;
|
---|
522 |
|
---|
523 | return parent;
|
---|
524 | }
|
---|
525 | EXPORT_SYMBOL(rb_next);
|
---|
526 |
|
---|
527 | struct rb_node *rb_prev(const struct rb_node *node)
|
---|
528 | {
|
---|
529 | struct rb_node *parent;
|
---|
530 |
|
---|
531 | if (RB_EMPTY_NODE(node))
|
---|
532 | return NULL;
|
---|
533 |
|
---|
534 | /*
|
---|
535 | * If we have a left-hand child, go down and then right as far
|
---|
536 | * as we can.
|
---|
537 | */
|
---|
538 | if (node->rb_left) {
|
---|
539 | node = node->rb_left;
|
---|
540 | while (node->rb_right)
|
---|
541 | node = node->rb_right;
|
---|
542 | return (struct rb_node *)node;
|
---|
543 | }
|
---|
544 |
|
---|
545 | /*
|
---|
546 | * No left-hand children. Go up till we find an ancestor which
|
---|
547 | * is a right-hand child of its parent.
|
---|
548 | */
|
---|
549 | while ((parent = rb_parent(node)) && node == parent->rb_left)
|
---|
550 | node = parent;
|
---|
551 |
|
---|
552 | return parent;
|
---|
553 | }
|
---|
554 | EXPORT_SYMBOL(rb_prev);
|
---|
555 |
|
---|
556 | void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
---|
557 | struct rb_root *root)
|
---|
558 | {
|
---|
559 | struct rb_node *parent = rb_parent(victim);
|
---|
560 |
|
---|
561 | /* Copy the pointers/colour from the victim to the replacement */
|
---|
562 | *new = *victim;
|
---|
563 |
|
---|
564 | /* Set the surrounding nodes to point to the replacement */
|
---|
565 | if (victim->rb_left)
|
---|
566 | rb_set_parent(victim->rb_left, new);
|
---|
567 | if (victim->rb_right)
|
---|
568 | rb_set_parent(victim->rb_right, new);
|
---|
569 | __rb_change_child(victim, new, parent, root);
|
---|
570 | }
|
---|
571 | EXPORT_SYMBOL(rb_replace_node);
|
---|
572 |
|
---|
573 | #ifndef TARGET_OS2
|
---|
574 | void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
|
---|
575 | struct rb_root *root)
|
---|
576 | {
|
---|
577 | struct rb_node *parent = rb_parent(victim);
|
---|
578 |
|
---|
579 | /* Copy the pointers/colour from the victim to the replacement */
|
---|
580 | *new = *victim;
|
---|
581 |
|
---|
582 | /* Set the surrounding nodes to point to the replacement */
|
---|
583 | if (victim->rb_left)
|
---|
584 | rb_set_parent(victim->rb_left, new);
|
---|
585 | if (victim->rb_right)
|
---|
586 | rb_set_parent(victim->rb_right, new);
|
---|
587 |
|
---|
588 | /* Set the parent's pointer to the new node last after an RCU barrier
|
---|
589 | * so that the pointers onwards are seen to be set correctly when doing
|
---|
590 | * an RCU walk over the tree.
|
---|
591 | */
|
---|
592 | __rb_change_child_rcu(victim, new, parent, root);
|
---|
593 | }
|
---|
594 | EXPORT_SYMBOL(rb_replace_node_rcu);
|
---|
595 | #endif
|
---|
596 |
|
---|
597 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
|
---|
598 | {
|
---|
599 | for (;;) {
|
---|
600 | if (node->rb_left)
|
---|
601 | node = node->rb_left;
|
---|
602 | else if (node->rb_right)
|
---|
603 | node = node->rb_right;
|
---|
604 | else
|
---|
605 | return (struct rb_node *)node;
|
---|
606 | }
|
---|
607 | }
|
---|
608 |
|
---|
609 | struct rb_node *rb_next_postorder(const struct rb_node *node)
|
---|
610 | {
|
---|
611 | const struct rb_node *parent;
|
---|
612 | if (!node)
|
---|
613 | return NULL;
|
---|
614 | parent = rb_parent(node);
|
---|
615 |
|
---|
616 | /* If we're sitting on node, we've already seen our children */
|
---|
617 | if (parent && node == parent->rb_left && parent->rb_right) {
|
---|
618 | /* If we are the parent's left node, go to the parent's right
|
---|
619 | * node then all the way down to the left */
|
---|
620 | return rb_left_deepest_node(parent->rb_right);
|
---|
621 | } else
|
---|
622 | /* Otherwise we are the parent's right node, and the parent
|
---|
623 | * should be next */
|
---|
624 | return (struct rb_node *)parent;
|
---|
625 | }
|
---|
626 | EXPORT_SYMBOL(rb_next_postorder);
|
---|
627 |
|
---|
628 | struct rb_node *rb_first_postorder(const struct rb_root *root)
|
---|
629 | {
|
---|
630 | if (!root->rb_node)
|
---|
631 | return NULL;
|
---|
632 |
|
---|
633 | return rb_left_deepest_node(root->rb_node);
|
---|
634 | }
|
---|
635 | EXPORT_SYMBOL(rb_first_postorder);
|
---|