source: GPL/branches/uniaud32-next/lib32/bitmap.c@ 615

Last change on this file since 615 was 615, checked in by Paul Smedley, 5 years ago

Add source for uniaud32 based on code from linux kernel 5.4.86

File size: 34.7 KB
Line 
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8#include <linux/module.h>
9#include <linux/ctype.h>
10#include <linux/errno.h>
11#include <linux/bitmap.h>
12#include <linux/bitops.h>
13#include <asm/uaccess.h>
14#include <linux/list.h>
15#include <linux/byteorder/generic.h>
16#include <linux/byteorder/little_endian.h>
17
18/*
19 * bitmaps provide an array of bits, implemented using an an
20 * array of unsigned longs. The number of valid bits in a
21 * given bitmap does _not_ need to be an exact multiple of
22 * BITS_PER_LONG.
23 *
24 * The possible unused bits in the last, partially used word
25 * of a bitmap are 'don't care'. The implementation makes
26 * no particular effort to keep them zero. It ensures that
27 * their value will not affect the results of any operation.
28 * The bitmap operations that return Boolean (bitmap_empty,
29 * for example) or scalar (bitmap_weight, for example) results
30 * carefully filter out these unused bits from impacting their
31 * results.
32 *
33 * These operations actually hold to a slightly stronger rule:
34 * if you don't input any bitmaps to these ops that have some
35 * unused bits set, then they won't output any set unused bits
36 * in output bitmaps.
37 *
38 * The byte ordering of bitmaps is more natural on little
39 * endian architectures. See the big-endian headers
40 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
41 * for the best explanations of this ordering.
42 */
43
44int __bitmap_empty(const unsigned long *bitmap, int bits)
45{
46 int k, lim = bits/BITS_PER_LONG;
47 for (k = 0; k < lim; ++k)
48 if (bitmap[k])
49 return 0;
50
51 if (bits % BITS_PER_LONG)
52 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
53 return 0;
54
55 return 1;
56}
57EXPORT_SYMBOL(__bitmap_empty);
58
59int __bitmap_full(const unsigned long *bitmap, int bits)
60{
61 int k, lim = bits/BITS_PER_LONG;
62 for (k = 0; k < lim; ++k)
63 if (~bitmap[k])
64 return 0;
65
66 if (bits % BITS_PER_LONG)
67 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
68 return 0;
69
70 return 1;
71}
72EXPORT_SYMBOL(__bitmap_full);
73
74int __bitmap_equal(const unsigned long *bitmap1,
75 const unsigned long *bitmap2, int bits)
76{
77 int k, lim = bits/BITS_PER_LONG;
78 for (k = 0; k < lim; ++k)
79 if (bitmap1[k] != bitmap2[k])
80 return 0;
81
82 if (bits % BITS_PER_LONG)
83 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
84 return 0;
85
86 return 1;
87}
88EXPORT_SYMBOL(__bitmap_equal);
89
90void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
91{
92 int k, lim = bits/BITS_PER_LONG;
93 for (k = 0; k < lim; ++k)
94 dst[k] = ~src[k];
95
96 if (bits % BITS_PER_LONG)
97 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
98}
99EXPORT_SYMBOL(__bitmap_complement);
100
101/**
102 * __bitmap_shift_right - logical right shift of the bits in a bitmap
103 * @dst : destination bitmap
104 * @src : source bitmap
105 * @shift : shift by this many bits
106 * @bits : bitmap size, in bits
107 *
108 * Shifting right (dividing) means moving bits in the MS -> LS bit
109 * direction. Zeros are fed into the vacated MS positions and the
110 * LS bits shifted off the bottom are lost.
111 */
112void __bitmap_shift_right(unsigned long *dst,
113 const unsigned long *src, int shift, int bits)
114{
115 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
116 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
117 unsigned long mask = (1UL << left) - 1;
118 for (k = 0; off + k < lim; ++k) {
119 unsigned long upper, lower;
120
121 /*
122 * If shift is not word aligned, take lower rem bits of
123 * word above and make them the top rem bits of result.
124 */
125 if (!rem || off + k + 1 >= lim)
126 upper = 0;
127 else {
128 upper = src[off + k + 1];
129 if (off + k + 1 == lim - 1 && left)
130 upper &= mask;
131 }
132 lower = src[off + k];
133 if (left && off + k == lim - 1)
134 lower &= mask;
135 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
136 if (left && k == lim - 1)
137 dst[k] &= mask;
138 }
139 if (off)
140 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
141}
142EXPORT_SYMBOL(__bitmap_shift_right);
143
144
145/**
146 * __bitmap_shift_left - logical left shift of the bits in a bitmap
147 * @dst : destination bitmap
148 * @src : source bitmap
149 * @shift : shift by this many bits
150 * @bits : bitmap size, in bits
151 *
152 * Shifting left (multiplying) means moving bits in the LS -> MS
153 * direction. Zeros are fed into the vacated LS bit positions
154 * and those MS bits shifted off the top are lost.
155 */
156
157void __bitmap_shift_left(unsigned long *dst,
158 const unsigned long *src, int shift, int bits)
159{
160 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
161 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
162 for (k = lim - off - 1; k >= 0; --k) {
163 unsigned long upper, lower;
164
165 /*
166 * If shift is not word aligned, take upper rem bits of
167 * word below and make them the bottom rem bits of result.
168 */
169 if (rem && k > 0)
170 lower = src[k - 1];
171 else
172 lower = 0;
173 upper = src[k];
174 if (left && k == lim - 1)
175 upper &= (1UL << left) - 1;
176 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
177 if (left && k + off == lim - 1)
178 dst[k + off] &= (1UL << left) - 1;
179 }
180 if (off)
181 memset(dst, 0, off*sizeof(unsigned long));
182}
183EXPORT_SYMBOL(__bitmap_shift_left);
184
185int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
186 const unsigned long *bitmap2, int bits)
187{
188 int k;
189 int nr = BITS_TO_LONGS(bits);
190 unsigned long result = 0;
191
192 for (k = 0; k < nr; k++)
193 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
194 return result != 0;
195}
196EXPORT_SYMBOL(__bitmap_and);
197
198void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
199 const unsigned long *bitmap2, int bits)
200{
201 int k;
202 int nr = BITS_TO_LONGS(bits);
203
204 for (k = 0; k < nr; k++)
205 dst[k] = bitmap1[k] | bitmap2[k];
206}
207EXPORT_SYMBOL(__bitmap_or);
208
209void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
210 const unsigned long *bitmap2, int bits)
211{
212 int k;
213 int nr = BITS_TO_LONGS(bits);
214
215 for (k = 0; k < nr; k++)
216 dst[k] = bitmap1[k] ^ bitmap2[k];
217}
218EXPORT_SYMBOL(__bitmap_xor);
219
220int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
221 const unsigned long *bitmap2, int bits)
222{
223 int k;
224 int nr = BITS_TO_LONGS(bits);
225 unsigned long result = 0;
226
227 for (k = 0; k < nr; k++)
228 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
229 return result != 0;
230}
231EXPORT_SYMBOL(__bitmap_andnot);
232
233int __bitmap_intersects(const unsigned long *bitmap1,
234 const unsigned long *bitmap2, int bits)
235{
236 int k, lim = bits/BITS_PER_LONG;
237 for (k = 0; k < lim; ++k)
238 if (bitmap1[k] & bitmap2[k])
239 return 1;
240
241 if (bits % BITS_PER_LONG)
242 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
243 return 1;
244 return 0;
245}
246EXPORT_SYMBOL(__bitmap_intersects);
247
248int __bitmap_subset(const unsigned long *bitmap1,
249 const unsigned long *bitmap2, int bits)
250{
251 int k, lim = bits/BITS_PER_LONG;
252 for (k = 0; k < lim; ++k)
253 if (bitmap1[k] & ~bitmap2[k])
254 return 0;
255
256 if (bits % BITS_PER_LONG)
257 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
258 return 0;
259 return 1;
260}
261EXPORT_SYMBOL(__bitmap_subset);
262
263#if 0
264int __bitmap_weight(const unsigned long *bitmap, int bits)
265{
266 int k, w = 0, lim = bits/BITS_PER_LONG;
267
268 for (k = 0; k < lim; k++)
269 w += hweight_long(bitmap[k]);
270
271 if (bits % BITS_PER_LONG)
272 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
273
274 return w;
275}
276EXPORT_SYMBOL(__bitmap_weight);
277#endif
278
279#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
280
281void bitmap_set(unsigned long *map, int start, int nr)
282{
283 unsigned long *p = map + BIT_WORD(start);
284 const int size = start + nr;
285 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
286 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
287
288 while (nr - bits_to_set >= 0) {
289 *p |= mask_to_set;
290 nr -= bits_to_set;
291 bits_to_set = BITS_PER_LONG;
292 mask_to_set = ~0UL;
293 p++;
294 }
295 if (nr) {
296 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
297 *p |= mask_to_set;
298 }
299}
300EXPORT_SYMBOL(bitmap_set);
301
302void bitmap_clear(unsigned long *map, int start, int nr)
303{
304 unsigned long *p = map + BIT_WORD(start);
305 const int size = start + nr;
306 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
307 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
308
309 while (nr - bits_to_clear >= 0) {
310 *p &= ~mask_to_clear;
311 nr -= bits_to_clear;
312 bits_to_clear = BITS_PER_LONG;
313 mask_to_clear = ~0UL;
314 p++;
315 }
316 if (nr) {
317 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
318 *p &= ~mask_to_clear;
319 }
320}
321EXPORT_SYMBOL(bitmap_clear);
322
323/*
324 * bitmap_find_next_zero_area - find a contiguous aligned zero area
325 * @map: The address to base the search on
326 * @size: The bitmap size in bits
327 * @start: The bitnumber to start searching at
328 * @nr: The number of zeroed bits we're looking for
329 * @align_mask: Alignment mask for zero area
330 *
331 * The @align_mask should be one less than a power of 2; the effect is that
332 * the bit offset of all zero areas this function finds is multiples of that
333 * power of 2. A @align_mask of 0 means no alignment is required.
334 */
335unsigned long bitmap_find_next_zero_area(unsigned long *map,
336 unsigned long size,
337 unsigned long start,
338 unsigned int nr,
339 unsigned long align_mask)
340{
341 unsigned long index, end, i;
342again:
343 index = find_next_zero_bit(map, size, start);
344
345 /* Align allocation */
346 index = __ALIGN_MASK(index, align_mask);
347
348 end = index + nr;
349 if (end > size)
350 return end;
351 i = find_next_bit(map, end, index);
352 if (i < end) {
353 start = i + 1;
354 goto again;
355 }
356 return index;
357}
358EXPORT_SYMBOL(bitmap_find_next_zero_area);
359
360/*
361 * Bitmap printing & parsing functions: first version by Bill Irwin,
362 * second version by Paul Jackson, third by Joe Korty.
363 */
364
365#define CHUNKSZ 32
366#define nbits_to_hold_value(val) fls(val)
367#define BASEDEC 10 /* fancier cpuset lists input in decimal */
368
369/**
370 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
371 * @buf: byte buffer into which string is placed
372 * @buflen: reserved size of @buf, in bytes
373 * @maskp: pointer to bitmap to convert
374 * @nmaskbits: size of bitmap, in bits
375 *
376 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
377 * comma-separated sets of eight digits per set.
378 */
379int bitmap_scnprintf(char *buf, unsigned int buflen,
380 const unsigned long *maskp, int nmaskbits)
381{
382 int i, word, bit, len = 0;
383 unsigned long val;
384 const char *sep = "";
385 int chunksz;
386 u32 chunkmask;
387
388 chunksz = nmaskbits & (CHUNKSZ - 1);
389 if (chunksz == 0)
390 chunksz = CHUNKSZ;
391
392 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
393 for (; i >= 0; i -= CHUNKSZ) {
394 chunkmask = ((1ULL << chunksz) - 1);
395 word = i / BITS_PER_LONG;
396 bit = i % BITS_PER_LONG;
397 val = (maskp[word] >> bit) & chunkmask;
398 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
399 (chunksz+3)/4, val);
400 chunksz = CHUNKSZ;
401 sep = ",";
402 }
403 return len;
404}
405EXPORT_SYMBOL(bitmap_scnprintf);
406
407/**
408 * __bitmap_parse - convert an ASCII hex string into a bitmap.
409 * @buf: pointer to buffer containing string.
410 * @buflen: buffer size in bytes. If string is smaller than this
411 * then it must be terminated with a \0.
412 * @is_user: location of buffer, 0 indicates kernel space
413 * @maskp: pointer to bitmap array that will contain result.
414 * @nmaskbits: size of bitmap, in bits.
415 *
416 * Commas group hex digits into chunks. Each chunk defines exactly 32
417 * bits of the resultant bitmask. No chunk may specify a value larger
418 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
419 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
420 * characters and for grouping errors such as "1,,5", ",44", "," and "".
421 * Leading and trailing whitespace accepted, but not embedded whitespace.
422 */
423int __bitmap_parse(const char *buf, unsigned int buflen,
424 int is_user, unsigned long *maskp,
425 int nmaskbits)
426{
427 int c, old_c, totaldigits, ndigits, nchunks, nbits;
428 u32 chunk;
429// const char __user *ubuf = buf;
430
431 bitmap_zero(maskp, nmaskbits);
432
433 nchunks = nbits = totaldigits = c = 0;
434 do {
435 chunk = ndigits = 0;
436
437 /* Get the next chunk of the bitmap */
438 while (buflen) {
439 old_c = c;
440#if 0
441 if (is_user) {
442 if (__get_user(c, ubuf++))
443 return -EFAULT;
444 }
445 else
446#endif
447 c = *buf++;
448 buflen--;
449 if (isspace(c))
450 continue;
451
452 /*
453 * If the last character was a space and the current
454 * character isn't '\0', we've got embedded whitespace.
455 * This is a no-no, so throw an error.
456 */
457 if (totaldigits && c && isspace(old_c))
458 return -EINVAL;
459
460 /* A '\0' or a ',' signal the end of the chunk */
461 if (c == '\0' || c == ',')
462 break;
463
464 if (!isxdigit(c))
465 return -EINVAL;
466
467 /*
468 * Make sure there are at least 4 free bits in 'chunk'.
469 * If not, this hexdigit will overflow 'chunk', so
470 * throw an error.
471 */
472 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
473 return -EOVERFLOW;
474
475 chunk = (chunk << 4) | hex_to_bin(c);
476 ndigits++; totaldigits++;
477 }
478 if (ndigits == 0)
479 return -EINVAL;
480 if (nchunks == 0 && chunk == 0)
481 continue;
482
483 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
484 *maskp |= chunk;
485 nchunks++;
486 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
487 if (nbits > nmaskbits)
488 return -EOVERFLOW;
489 } while (buflen && c == ',');
490
491 return 0;
492}
493EXPORT_SYMBOL(__bitmap_parse);
494
495/**
496 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
497 *
498 * @ubuf: pointer to user buffer containing string.
499 * @ulen: buffer size in bytes. If string is smaller than this
500 * then it must be terminated with a \0.
501 * @maskp: pointer to bitmap array that will contain result.
502 * @nmaskbits: size of bitmap, in bits.
503 *
504 * Wrapper for __bitmap_parse(), providing it with user buffer.
505 *
506 * We cannot have this as an inline function in bitmap.h because it needs
507 * linux/uaccess.h to get the access_ok() declaration and this causes
508 * cyclic dependencies.
509 */
510int bitmap_parse_user(const char __user *ubuf,
511 unsigned int ulen, unsigned long *maskp,
512 int nmaskbits)
513{
514 if (!access_ok(VERIFY_READ, ubuf, ulen))
515 return -EFAULT;
516 return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
517}
518EXPORT_SYMBOL(bitmap_parse_user);
519
520/*
521 * bscnl_emit(buf, buflen, rbot, rtop, bp)
522 *
523 * Helper routine for bitmap_scnlistprintf(). Write decimal number
524 * or range to buf, suppressing output past buf+buflen, with optional
525 * comma-prefix. Return len of what would be written to buf, if it
526 * all fit.
527 */
528static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
529{
530 if (len > 0)
531 len += scnprintf(buf + len, buflen - len, ",");
532 if (rbot == rtop)
533 len += scnprintf(buf + len, buflen - len, "%d", rbot);
534 else
535 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
536 return len;
537}
538
539/**
540 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
541 * @buf: byte buffer into which string is placed
542 * @buflen: reserved size of @buf, in bytes
543 * @maskp: pointer to bitmap to convert
544 * @nmaskbits: size of bitmap, in bits
545 *
546 * Output format is a comma-separated list of decimal numbers and
547 * ranges. Consecutively set bits are shown as two hyphen-separated
548 * decimal numbers, the smallest and largest bit numbers set in
549 * the range. Output format is compatible with the format
550 * accepted as input by bitmap_parselist().
551 *
552 * The return value is the number of characters which would be
553 * generated for the given input, excluding the trailing '\0', as
554 * per ISO C99.
555 */
556int bitmap_scnlistprintf(char *buf, unsigned int buflen,
557 const unsigned long *maskp, int nmaskbits)
558{
559 int len = 0;
560 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
561 int cur, rbot, rtop;
562
563 if (buflen == 0)
564 return 0;
565 buf[0] = 0;
566
567 rbot = cur = find_first_bit(maskp, nmaskbits);
568 while (cur < nmaskbits) {
569 rtop = cur;
570 cur = find_next_bit(maskp, nmaskbits, cur+1);
571 if (cur >= nmaskbits || cur > rtop + 1) {
572 len = bscnl_emit(buf, buflen, rbot, rtop, len);
573 rbot = cur;
574 }
575 }
576 return len;
577}
578EXPORT_SYMBOL(bitmap_scnlistprintf);
579
580/**
581 * __bitmap_parselist - convert list format ASCII string to bitmap
582 * @buf: read nul-terminated user string from this buffer
583 * @buflen: buffer size in bytes. If string is smaller than this
584 * then it must be terminated with a \0.
585 * @is_user: location of buffer, 0 indicates kernel space
586 * @maskp: write resulting mask here
587 * @nmaskbits: number of bits in mask to be written
588 *
589 * Input format is a comma-separated list of decimal numbers and
590 * ranges. Consecutively set bits are shown as two hyphen-separated
591 * decimal numbers, the smallest and largest bit numbers set in
592 * the range.
593 *
594 * Returns 0 on success, -errno on invalid input strings.
595 * Error values:
596 * %-EINVAL: second number in range smaller than first
597 * %-EINVAL: invalid character in string
598 * %-ERANGE: bit number specified too large for mask
599 */
600static int __bitmap_parselist(const char *buf, unsigned int buflen,
601 int is_user, unsigned long *maskp,
602 int nmaskbits)
603{
604 unsigned a, b;
605 int c, old_c, totaldigits;
606// const char __user *ubuf = buf;
607 int exp_digit, in_range;
608
609 totaldigits = c = 0;
610 bitmap_zero(maskp, nmaskbits);
611 do {
612 exp_digit = 1;
613 in_range = 0;
614 a = b = 0;
615
616 /* Get the next cpu# or a range of cpu#'s */
617 while (buflen) {
618 old_c = c;
619#if 0
620 if (is_user) {
621 if (__get_user(c, ubuf++))
622 return -EFAULT;
623 } else
624#endif
625 c = *buf++;
626 buflen--;
627 if (isspace(c))
628 continue;
629
630 /*
631 * If the last character was a space and the current
632 * character isn't '\0', we've got embedded whitespace.
633 * This is a no-no, so throw an error.
634 */
635 if (totaldigits && c && isspace(old_c))
636 return -EINVAL;
637
638 /* A '\0' or a ',' signal the end of a cpu# or range */
639 if (c == '\0' || c == ',')
640 break;
641
642 if (c == '-') {
643 if (exp_digit || in_range)
644 return -EINVAL;
645 b = 0;
646 in_range = 1;
647 exp_digit = 1;
648 continue;
649 }
650
651 if (!isdigit(c))
652 return -EINVAL;
653
654 b = b * 10 + (c - '0');
655 if (!in_range)
656 a = b;
657 exp_digit = 0;
658 totaldigits++;
659 }
660 if (!(a <= b))
661 return -EINVAL;
662 if (b >= nmaskbits)
663 return -ERANGE;
664 while (a <= b) {
665 set_bit(a, maskp);
666 a++;
667 }
668 } while (buflen && c == ',');
669 return 0;
670}
671
672int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
673{
674 char *nl = strchr(bp, '\n');
675 int len;
676
677 if (nl)
678 len = nl - bp;
679 else
680 len = strlen(bp);
681
682 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
683}
684EXPORT_SYMBOL(bitmap_parselist);
685
686
687/**
688 * bitmap_parselist_user()
689 *
690 * @ubuf: pointer to user buffer containing string.
691 * @ulen: buffer size in bytes. If string is smaller than this
692 * then it must be terminated with a \0.
693 * @maskp: pointer to bitmap array that will contain result.
694 * @nmaskbits: size of bitmap, in bits.
695 *
696 * Wrapper for bitmap_parselist(), providing it with user buffer.
697 *
698 * We cannot have this as an inline function in bitmap.h because it needs
699 * linux/uaccess.h to get the access_ok() declaration and this causes
700 * cyclic dependencies.
701 */
702int bitmap_parselist_user(const char __user *ubuf,
703 unsigned int ulen, unsigned long *maskp,
704 int nmaskbits)
705{
706 if (!access_ok(VERIFY_READ, ubuf, ulen))
707 return -EFAULT;
708 return __bitmap_parselist((const char *)ubuf,
709 ulen, 1, maskp, nmaskbits);
710}
711EXPORT_SYMBOL(bitmap_parselist_user);
712
713
714# if 0
715/**
716 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
717 * @buf: pointer to a bitmap
718 * @pos: a bit position in @buf (0 <= @pos < @bits)
719 * @bits: number of valid bit positions in @buf
720 *
721 * Map the bit at position @pos in @buf (of length @bits) to the
722 * ordinal of which set bit it is. If it is not set or if @pos
723 * is not a valid bit position, map to -1.
724 *
725 * If for example, just bits 4 through 7 are set in @buf, then @pos
726 * values 4 through 7 will get mapped to 0 through 3, respectively,
727 * and other @pos values will get mapped to 0. When @pos value 7
728 * gets mapped to (returns) @ord value 3 in this example, that means
729 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
730 *
731 * The bit positions 0 through @bits are valid positions in @buf.
732 */
733static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
734{
735 int i, ord;
736
737 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
738 return -1;
739
740 i = find_first_bit(buf, bits);
741 ord = 0;
742 while (i < pos) {
743 i = find_next_bit(buf, bits, i + 1);
744 ord++;
745 }
746 BUG_ON(i != pos);
747
748 return ord;
749}
750
751/**
752 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
753 * @buf: pointer to bitmap
754 * @ord: ordinal bit position (n-th set bit, n >= 0)
755 * @bits: number of valid bit positions in @buf
756 *
757 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
758 * Value of @ord should be in range 0 <= @ord < weight(buf), else
759 * results are undefined.
760 *
761 * If for example, just bits 4 through 7 are set in @buf, then @ord
762 * values 0 through 3 will get mapped to 4 through 7, respectively,
763 * and all other @ord values return undefined values. When @ord value 3
764 * gets mapped to (returns) @pos value 7 in this example, that means
765 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
766 *
767 * The bit positions 0 through @bits are valid positions in @buf.
768 */
769static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
770{
771 int pos = 0;
772
773 if (ord >= 0 && ord < bits) {
774 int i;
775
776 for (i = find_first_bit(buf, bits);
777 i < bits && ord > 0;
778 i = find_next_bit(buf, bits, i + 1))
779 ord--;
780 if (i < bits && ord == 0)
781 pos = i;
782 }
783
784 return pos;
785}
786
787/**
788 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
789 * @dst: remapped result
790 * @src: subset to be remapped
791 * @old: defines domain of map
792 * @new: defines range of map
793 * @bits: number of bits in each of these bitmaps
794 *
795 * Let @old and @new define a mapping of bit positions, such that
796 * whatever position is held by the n-th set bit in @old is mapped
797 * to the n-th set bit in @new. In the more general case, allowing
798 * for the possibility that the weight 'w' of @new is less than the
799 * weight of @old, map the position of the n-th set bit in @old to
800 * the position of the m-th set bit in @new, where m == n % w.
801 *
802 * If either of the @old and @new bitmaps are empty, or if @src and
803 * @dst point to the same location, then this routine copies @src
804 * to @dst.
805 *
806 * The positions of unset bits in @old are mapped to themselves
807 * (the identify map).
808 *
809 * Apply the above specified mapping to @src, placing the result in
810 * @dst, clearing any bits previously set in @dst.
811 *
812 * For example, lets say that @old has bits 4 through 7 set, and
813 * @new has bits 12 through 15 set. This defines the mapping of bit
814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
815 * bit positions unchanged. So if say @src comes into this routine
816 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
817 * 13 and 15 set.
818 */
819void bitmap_remap(unsigned long *dst, const unsigned long *src,
820 const unsigned long *old, const unsigned long *new,
821 int bits)
822{
823 int oldbit, w;
824
825 if (dst == src) /* following doesn't handle inplace remaps */
826 return;
827 bitmap_zero(dst, bits);
828
829 w = bitmap_weight(new, bits);
830 for_each_set_bit(oldbit, src, bits) {
831 int n = bitmap_pos_to_ord(old, oldbit, bits);
832
833 if (n < 0 || w == 0)
834 set_bit(oldbit, dst); /* identity map */
835 else
836 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
837 }
838}
839EXPORT_SYMBOL(bitmap_remap);
840
841/**
842 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
843 * @oldbit: bit position to be mapped
844 * @old: defines domain of map
845 * @new: defines range of map
846 * @bits: number of bits in each of these bitmaps
847 *
848 * Let @old and @new define a mapping of bit positions, such that
849 * whatever position is held by the n-th set bit in @old is mapped
850 * to the n-th set bit in @new. In the more general case, allowing
851 * for the possibility that the weight 'w' of @new is less than the
852 * weight of @old, map the position of the n-th set bit in @old to
853 * the position of the m-th set bit in @new, where m == n % w.
854 *
855 * The positions of unset bits in @old are mapped to themselves
856 * (the identify map).
857 *
858 * Apply the above specified mapping to bit position @oldbit, returning
859 * the new bit position.
860 *
861 * For example, lets say that @old has bits 4 through 7 set, and
862 * @new has bits 12 through 15 set. This defines the mapping of bit
863 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
864 * bit positions unchanged. So if say @oldbit is 5, then this routine
865 * returns 13.
866 */
867int bitmap_bitremap(int oldbit, const unsigned long *old,
868 const unsigned long *new, int bits)
869{
870 int w = bitmap_weight(new, bits);
871 int n = bitmap_pos_to_ord(old, oldbit, bits);
872 if (n < 0 || w == 0)
873 return oldbit;
874 else
875 return bitmap_ord_to_pos(new, n % w, bits);
876}
877EXPORT_SYMBOL(bitmap_bitremap);
878
879/**
880 * bitmap_onto - translate one bitmap relative to another
881 * @dst: resulting translated bitmap
882 * @orig: original untranslated bitmap
883 * @relmap: bitmap relative to which translated
884 * @bits: number of bits in each of these bitmaps
885 *
886 * Set the n-th bit of @dst iff there exists some m such that the
887 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
888 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
889 * (If you understood the previous sentence the first time your
890 * read it, you're overqualified for your current job.)
891 *
892 * In other words, @orig is mapped onto (surjectively) @dst,
893 * using the the map { <n, m> | the n-th bit of @relmap is the
894 * m-th set bit of @relmap }.
895 *
896 * Any set bits in @orig above bit number W, where W is the
897 * weight of (number of set bits in) @relmap are mapped nowhere.
898 * In particular, if for all bits m set in @orig, m >= W, then
899 * @dst will end up empty. In situations where the possibility
900 * of such an empty result is not desired, one way to avoid it is
901 * to use the bitmap_fold() operator, below, to first fold the
902 * @orig bitmap over itself so that all its set bits x are in the
903 * range 0 <= x < W. The bitmap_fold() operator does this by
904 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
905 *
906 * Example [1] for bitmap_onto():
907 * Let's say @relmap has bits 30-39 set, and @orig has bits
908 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
909 * @dst will have bits 31, 33, 35, 37 and 39 set.
910 *
911 * When bit 0 is set in @orig, it means turn on the bit in
912 * @dst corresponding to whatever is the first bit (if any)
913 * that is turned on in @relmap. Since bit 0 was off in the
914 * above example, we leave off that bit (bit 30) in @dst.
915 *
916 * When bit 1 is set in @orig (as in the above example), it
917 * means turn on the bit in @dst corresponding to whatever
918 * is the second bit that is turned on in @relmap. The second
919 * bit in @relmap that was turned on in the above example was
920 * bit 31, so we turned on bit 31 in @dst.
921 *
922 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
923 * because they were the 4th, 6th, 8th and 10th set bits
924 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
925 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
926 *
927 * When bit 11 is set in @orig, it means turn on the bit in
928 * @dst corresponding to whatever is the twelfth bit that is
929 * turned on in @relmap. In the above example, there were
930 * only ten bits turned on in @relmap (30..39), so that bit
931 * 11 was set in @orig had no affect on @dst.
932 *
933 * Example [2] for bitmap_fold() + bitmap_onto():
934 * Let's say @relmap has these ten bits set:
935 * 40 41 42 43 45 48 53 61 74 95
936 * (for the curious, that's 40 plus the first ten terms of the
937 * Fibonacci sequence.)
938 *
939 * Further lets say we use the following code, invoking
940 * bitmap_fold() then bitmap_onto, as suggested above to
941 * avoid the possitility of an empty @dst result:
942 *
943 * unsigned long *tmp; // a temporary bitmap's bits
944 *
945 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
946 * bitmap_onto(dst, tmp, relmap, bits);
947 *
948 * Then this table shows what various values of @dst would be, for
949 * various @orig's. I list the zero-based positions of each set bit.
950 * The tmp column shows the intermediate result, as computed by
951 * using bitmap_fold() to fold the @orig bitmap modulo ten
952 * (the weight of @relmap).
953 *
954 * @orig tmp @dst
955 * 0 0 40
956 * 1 1 41
957 * 9 9 95
958 * 10 0 40 (*)
959 * 1 3 5 7 1 3 5 7 41 43 48 61
960 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
961 * 0 9 18 27 0 9 8 7 40 61 74 95
962 * 0 10 20 30 0 40
963 * 0 11 22 33 0 1 2 3 40 41 42 43
964 * 0 12 24 36 0 2 4 6 40 42 45 53
965 * 78 102 211 1 2 8 41 42 74 (*)
966 *
967 * (*) For these marked lines, if we hadn't first done bitmap_fold()
968 * into tmp, then the @dst result would have been empty.
969 *
970 * If either of @orig or @relmap is empty (no set bits), then @dst
971 * will be returned empty.
972 *
973 * If (as explained above) the only set bits in @orig are in positions
974 * m where m >= W, (where W is the weight of @relmap) then @dst will
975 * once again be returned empty.
976 *
977 * All bits in @dst not set by the above rule are cleared.
978 */
979void bitmap_onto(unsigned long *dst, const unsigned long *orig,
980 const unsigned long *relmap, int bits)
981{
982 int n, m; /* same meaning as in above comment */
983
984 if (dst == orig) /* following doesn't handle inplace mappings */
985 return;
986 bitmap_zero(dst, bits);
987
988 /*
989 * The following code is a more efficient, but less
990 * obvious, equivalent to the loop:
991 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
992 * n = bitmap_ord_to_pos(orig, m, bits);
993 * if (test_bit(m, orig))
994 * set_bit(n, dst);
995 * }
996 */
997
998 m = 0;
999 for_each_set_bit(n, relmap, bits) {
1000 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1001 if (test_bit(m, orig))
1002 set_bit(n, dst);
1003 m++;
1004 }
1005}
1006EXPORT_SYMBOL(bitmap_onto);
1007#endif
1008
1009/**
1010 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1011 * @dst: resulting smaller bitmap
1012 * @orig: original larger bitmap
1013 * @sz: specified size
1014 * @bits: number of bits in each of these bitmaps
1015 *
1016 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1017 * Clear all other bits in @dst. See further the comment and
1018 * Example [2] for bitmap_onto() for why and how to use this.
1019 */
1020void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1021 int sz, int bits)
1022{
1023 int oldbit;
1024
1025 if (dst == orig) /* following doesn't handle inplace mappings */
1026 return;
1027 bitmap_zero(dst, bits);
1028
1029 for_each_set_bit(oldbit, orig, bits)
1030 set_bit(oldbit % sz, dst);
1031}
1032EXPORT_SYMBOL(bitmap_fold);
1033
1034/*
1035 * Common code for bitmap_*_region() routines.
1036 * bitmap: array of unsigned longs corresponding to the bitmap
1037 * pos: the beginning of the region
1038 * order: region size (log base 2 of number of bits)
1039 * reg_op: operation(s) to perform on that region of bitmap
1040 *
1041 * Can set, verify and/or release a region of bits in a bitmap,
1042 * depending on which combination of REG_OP_* flag bits is set.
1043 *
1044 * A region of a bitmap is a sequence of bits in the bitmap, of
1045 * some size '1 << order' (a power of two), aligned to that same
1046 * '1 << order' power of two.
1047 *
1048 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1049 * Returns 0 in all other cases and reg_ops.
1050 */
1051
1052enum {
1053 REG_OP_ISFREE, /* true if region is all zero bits */
1054 REG_OP_ALLOC, /* set all bits in region */
1055 REG_OP_RELEASE, /* clear all bits in region */
1056};
1057
1058static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1059{
1060 int nbits_reg; /* number of bits in region */
1061 int index; /* index first long of region in bitmap */
1062 int offset; /* bit offset region in bitmap[index] */
1063 int nlongs_reg; /* num longs spanned by region in bitmap */
1064 int nbitsinlong; /* num bits of region in each spanned long */
1065 unsigned long mask; /* bitmask for one long of region */
1066 int i; /* scans bitmap by longs */
1067 int ret = 0; /* return value */
1068
1069 /*
1070 * Either nlongs_reg == 1 (for small orders that fit in one long)
1071 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1072 */
1073 nbits_reg = 1 << order;
1074 index = pos / BITS_PER_LONG;
1075 offset = pos - (index * BITS_PER_LONG);
1076 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1077 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1078
1079 /*
1080 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1081 * overflows if nbitsinlong == BITS_PER_LONG.
1082 */
1083 mask = (1UL << (nbitsinlong - 1));
1084 mask += mask - 1;
1085 mask <<= offset;
1086
1087 switch (reg_op) {
1088 case REG_OP_ISFREE:
1089 for (i = 0; i < nlongs_reg; i++) {
1090 if (bitmap[index + i] & mask)
1091 goto done;
1092 }
1093 ret = 1; /* all bits in region free (zero) */
1094 break;
1095
1096 case REG_OP_ALLOC:
1097 for (i = 0; i < nlongs_reg; i++)
1098 bitmap[index + i] |= mask;
1099 break;
1100
1101 case REG_OP_RELEASE:
1102 for (i = 0; i < nlongs_reg; i++)
1103 bitmap[index + i] &= ~mask;
1104 break;
1105 }
1106done:
1107 return ret;
1108}
1109
1110/**
1111 * bitmap_find_free_region - find a contiguous aligned mem region
1112 * @bitmap: array of unsigned longs corresponding to the bitmap
1113 * @bits: number of bits in the bitmap
1114 * @order: region size (log base 2 of number of bits) to find
1115 *
1116 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1117 * allocate them (set them to one). Only consider regions of length
1118 * a power (@order) of two, aligned to that power of two, which
1119 * makes the search algorithm much faster.
1120 *
1121 * Return the bit offset in bitmap of the allocated region,
1122 * or -errno on failure.
1123 */
1124int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1125{
1126 int pos, end; /* scans bitmap by regions of size order */
1127
1128 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1129 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1130 continue;
1131 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1132 return pos;
1133 }
1134 return -ENOMEM;
1135}
1136EXPORT_SYMBOL(bitmap_find_free_region);
1137
1138/**
1139 * bitmap_release_region - release allocated bitmap region
1140 * @bitmap: array of unsigned longs corresponding to the bitmap
1141 * @pos: beginning of bit region to release
1142 * @order: region size (log base 2 of number of bits) to release
1143 *
1144 * This is the complement to __bitmap_find_free_region() and releases
1145 * the found region (by clearing it in the bitmap).
1146 *
1147 * No return value.
1148 */
1149void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1150{
1151 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1152}
1153EXPORT_SYMBOL(bitmap_release_region);
1154
1155/**
1156 * bitmap_allocate_region - allocate bitmap region
1157 * @bitmap: array of unsigned longs corresponding to the bitmap
1158 * @pos: beginning of bit region to allocate
1159 * @order: region size (log base 2 of number of bits) to allocate
1160 *
1161 * Allocate (set bits in) a specified region of a bitmap.
1162 *
1163 * Return 0 on success, or %-EBUSY if specified region wasn't
1164 * free (not all bits were zero).
1165 */
1166int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1167{
1168 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1169 return -EBUSY;
1170 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1171 return 0;
1172}
1173EXPORT_SYMBOL(bitmap_allocate_region);
1174
1175/**
1176 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1177 * @dst: destination buffer
1178 * @src: bitmap to copy
1179 * @nbits: number of bits in the bitmap
1180 *
1181 * Require nbits % BITS_PER_LONG == 0.
1182 */
1183void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1184{
1185 unsigned long *d = dst;
1186 int i;
1187
1188 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1189 if (BITS_PER_LONG == 64)
1190 d[i] = cpu_to_le64(src[i]);
1191 else
1192 d[i] = cpu_to_le32(src[i]);
1193 }
1194}
1195EXPORT_SYMBOL(bitmap_copy_le);
Note: See TracBrowser for help on using the repository browser.