1 | /*
|
---|
2 | Unix SMB/CIFS implementation.
|
---|
3 | time handling functions
|
---|
4 |
|
---|
5 | Copyright (C) Andrew Tridgell 1992-2004
|
---|
6 | Copyright (C) Stefan (metze) Metzmacher 2002
|
---|
7 | Copyright (C) Jeremy Allison 2007
|
---|
8 | Copyright (C) Andrew Bartlett 2011
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify
|
---|
11 | it under the terms of the GNU General Public License as published by
|
---|
12 | the Free Software Foundation; either version 3 of the License, or
|
---|
13 | (at your option) any later version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful,
|
---|
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
18 | GNU General Public License for more details.
|
---|
19 |
|
---|
20 | You should have received a copy of the GNU General Public License
|
---|
21 | along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
22 | */
|
---|
23 |
|
---|
24 | #include "replace.h"
|
---|
25 | #include "system/time.h"
|
---|
26 | #include "byteorder.h"
|
---|
27 | #include "time_basic.h"
|
---|
28 | #include "lib/util/time.h" /* Avoid /usr/include/time.h */
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * @file
|
---|
32 | * @brief time handling functions
|
---|
33 | */
|
---|
34 |
|
---|
35 | #if (SIZEOF_LONG == 8)
|
---|
36 | #define TIME_FIXUP_CONSTANT_INT 11644473600L
|
---|
37 | #elif (SIZEOF_LONG_LONG == 8)
|
---|
38 | #define TIME_FIXUP_CONSTANT_INT 11644473600LL
|
---|
39 | #endif
|
---|
40 |
|
---|
41 |
|
---|
42 |
|
---|
43 | /**
|
---|
44 | External access to time_t_min and time_t_max.
|
---|
45 | **/
|
---|
46 | _PUBLIC_ time_t get_time_t_max(void)
|
---|
47 | {
|
---|
48 | return TIME_T_MAX;
|
---|
49 | }
|
---|
50 |
|
---|
51 | /**
|
---|
52 | a wrapper to preferably get the monotonic time
|
---|
53 | **/
|
---|
54 | _PUBLIC_ void clock_gettime_mono(struct timespec *tp)
|
---|
55 | {
|
---|
56 | /* prefer a suspend aware monotonic CLOCK_BOOTTIME: */
|
---|
57 | #ifdef CLOCK_BOOTTIME
|
---|
58 | if (clock_gettime(CLOCK_BOOTTIME,tp) == 0) {
|
---|
59 | return;
|
---|
60 | }
|
---|
61 | #endif
|
---|
62 | /* then try the monotonic clock: */
|
---|
63 | #if CUSTOM_CLOCK_MONOTONIC != CLOCK_REALTIME
|
---|
64 | if (clock_gettime(CUSTOM_CLOCK_MONOTONIC,tp) == 0) {
|
---|
65 | return;
|
---|
66 | }
|
---|
67 | #endif
|
---|
68 | clock_gettime(CLOCK_REALTIME,tp);
|
---|
69 | }
|
---|
70 |
|
---|
71 | /**
|
---|
72 | a wrapper to preferably get the monotonic time in seconds
|
---|
73 | **/
|
---|
74 | _PUBLIC_ time_t time_mono(time_t *t)
|
---|
75 | {
|
---|
76 | struct timespec tp;
|
---|
77 |
|
---|
78 | clock_gettime_mono(&tp);
|
---|
79 | if (t != NULL) {
|
---|
80 | *t = tp.tv_sec;
|
---|
81 | }
|
---|
82 | return tp.tv_sec;
|
---|
83 | }
|
---|
84 |
|
---|
85 |
|
---|
86 | #define TIME_FIXUP_CONSTANT 11644473600LL
|
---|
87 |
|
---|
88 | time_t convert_timespec_to_time_t(struct timespec ts)
|
---|
89 | {
|
---|
90 | /* Ensure tv_nsec is less than 1sec. */
|
---|
91 | while (ts.tv_nsec > 1000000000) {
|
---|
92 | ts.tv_sec += 1;
|
---|
93 | ts.tv_nsec -= 1000000000;
|
---|
94 | }
|
---|
95 |
|
---|
96 | /* 1 ns == 1,000,000,000 - one thousand millionths of a second.
|
---|
97 | increment if it's greater than 500 millionth of a second. */
|
---|
98 |
|
---|
99 | if (ts.tv_nsec > 500000000) {
|
---|
100 | return ts.tv_sec + 1;
|
---|
101 | }
|
---|
102 | return ts.tv_sec;
|
---|
103 | }
|
---|
104 |
|
---|
105 | struct timespec convert_time_t_to_timespec(time_t t)
|
---|
106 | {
|
---|
107 | struct timespec ts;
|
---|
108 | ts.tv_sec = t;
|
---|
109 | ts.tv_nsec = 0;
|
---|
110 | return ts;
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 |
|
---|
115 | /**
|
---|
116 | Interpret an 8 byte "filetime" structure to a time_t
|
---|
117 | It's originally in "100ns units since jan 1st 1601"
|
---|
118 |
|
---|
119 | An 8 byte value of 0xffffffffffffffff will be returned as a timespec of
|
---|
120 |
|
---|
121 | tv_sec = 0
|
---|
122 | tv_nsec = 0;
|
---|
123 |
|
---|
124 | Returns GMT.
|
---|
125 | **/
|
---|
126 | time_t nt_time_to_unix(NTTIME nt)
|
---|
127 | {
|
---|
128 | return convert_timespec_to_time_t(nt_time_to_unix_timespec(nt));
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | /**
|
---|
133 | put a 8 byte filetime from a time_t
|
---|
134 | This takes GMT as input
|
---|
135 | **/
|
---|
136 | _PUBLIC_ void unix_to_nt_time(NTTIME *nt, time_t t)
|
---|
137 | {
|
---|
138 | uint64_t t2;
|
---|
139 |
|
---|
140 | if (t == (time_t)-1) {
|
---|
141 | *nt = (NTTIME)-1LL;
|
---|
142 | return;
|
---|
143 | }
|
---|
144 |
|
---|
145 | if (t == TIME_T_MAX || t == INT64_MAX) {
|
---|
146 | *nt = 0x7fffffffffffffffLL;
|
---|
147 | return;
|
---|
148 | }
|
---|
149 |
|
---|
150 | if (t == 0) {
|
---|
151 | *nt = 0;
|
---|
152 | return;
|
---|
153 | }
|
---|
154 |
|
---|
155 | t2 = t;
|
---|
156 | t2 += TIME_FIXUP_CONSTANT_INT;
|
---|
157 | t2 *= 1000*1000*10;
|
---|
158 |
|
---|
159 | *nt = t2;
|
---|
160 | }
|
---|
161 |
|
---|
162 |
|
---|
163 | /**
|
---|
164 | check if it's a null unix time
|
---|
165 | **/
|
---|
166 | _PUBLIC_ bool null_time(time_t t)
|
---|
167 | {
|
---|
168 | return t == 0 ||
|
---|
169 | t == (time_t)0xFFFFFFFF ||
|
---|
170 | t == (time_t)-1;
|
---|
171 | }
|
---|
172 |
|
---|
173 |
|
---|
174 | /**
|
---|
175 | check if it's a null NTTIME
|
---|
176 | **/
|
---|
177 | _PUBLIC_ bool null_nttime(NTTIME t)
|
---|
178 | {
|
---|
179 | return t == 0 || t == (NTTIME)-1;
|
---|
180 | }
|
---|
181 |
|
---|
182 | /*******************************************************************
|
---|
183 | create a 16 bit dos packed date
|
---|
184 | ********************************************************************/
|
---|
185 | static uint16_t make_dos_date1(struct tm *t)
|
---|
186 | {
|
---|
187 | uint16_t ret=0;
|
---|
188 | ret = (((unsigned int)(t->tm_mon+1)) >> 3) | ((t->tm_year-80) << 1);
|
---|
189 | ret = ((ret&0xFF)<<8) | (t->tm_mday | (((t->tm_mon+1) & 0x7) << 5));
|
---|
190 | return ret;
|
---|
191 | }
|
---|
192 |
|
---|
193 | /*******************************************************************
|
---|
194 | create a 16 bit dos packed time
|
---|
195 | ********************************************************************/
|
---|
196 | static uint16_t make_dos_time1(struct tm *t)
|
---|
197 | {
|
---|
198 | uint16_t ret=0;
|
---|
199 | ret = ((((unsigned int)t->tm_min >> 3)&0x7) | (((unsigned int)t->tm_hour) << 3));
|
---|
200 | ret = ((ret&0xFF)<<8) | ((t->tm_sec/2) | ((t->tm_min & 0x7) << 5));
|
---|
201 | return ret;
|
---|
202 | }
|
---|
203 |
|
---|
204 | /*******************************************************************
|
---|
205 | create a 32 bit dos packed date/time from some parameters
|
---|
206 | This takes a GMT time and returns a packed localtime structure
|
---|
207 | ********************************************************************/
|
---|
208 | static uint32_t make_dos_date(time_t unixdate, int zone_offset)
|
---|
209 | {
|
---|
210 | struct tm *t;
|
---|
211 | uint32_t ret=0;
|
---|
212 |
|
---|
213 | if (unixdate == 0) {
|
---|
214 | return 0;
|
---|
215 | }
|
---|
216 |
|
---|
217 | unixdate -= zone_offset;
|
---|
218 |
|
---|
219 | t = gmtime(&unixdate);
|
---|
220 | if (!t) {
|
---|
221 | return 0xFFFFFFFF;
|
---|
222 | }
|
---|
223 |
|
---|
224 | ret = make_dos_date1(t);
|
---|
225 | ret = ((ret&0xFFFF)<<16) | make_dos_time1(t);
|
---|
226 |
|
---|
227 | return ret;
|
---|
228 | }
|
---|
229 |
|
---|
230 | /**
|
---|
231 | put a dos date into a buffer (time/date format)
|
---|
232 | This takes GMT time and puts local time in the buffer
|
---|
233 | **/
|
---|
234 | _PUBLIC_ void push_dos_date(uint8_t *buf, int offset, time_t unixdate, int zone_offset)
|
---|
235 | {
|
---|
236 | uint32_t x = make_dos_date(unixdate, zone_offset);
|
---|
237 | SIVAL(buf,offset,x);
|
---|
238 | }
|
---|
239 |
|
---|
240 | /**
|
---|
241 | put a dos date into a buffer (date/time format)
|
---|
242 | This takes GMT time and puts local time in the buffer
|
---|
243 | **/
|
---|
244 | _PUBLIC_ void push_dos_date2(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
|
---|
245 | {
|
---|
246 | uint32_t x;
|
---|
247 | x = make_dos_date(unixdate, zone_offset);
|
---|
248 | x = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
|
---|
249 | SIVAL(buf,offset,x);
|
---|
250 | }
|
---|
251 |
|
---|
252 | /**
|
---|
253 | put a dos 32 bit "unix like" date into a buffer. This routine takes
|
---|
254 | GMT and converts it to LOCAL time before putting it (most SMBs assume
|
---|
255 | localtime for this sort of date)
|
---|
256 | **/
|
---|
257 | _PUBLIC_ void push_dos_date3(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
|
---|
258 | {
|
---|
259 | if (!null_time(unixdate)) {
|
---|
260 | unixdate -= zone_offset;
|
---|
261 | }
|
---|
262 | SIVAL(buf,offset,unixdate);
|
---|
263 | }
|
---|
264 |
|
---|
265 | /*******************************************************************
|
---|
266 | interpret a 32 bit dos packed date/time to some parameters
|
---|
267 | ********************************************************************/
|
---|
268 | void interpret_dos_date(uint32_t date,int *year,int *month,int *day,int *hour,int *minute,int *second)
|
---|
269 | {
|
---|
270 | uint32_t p0,p1,p2,p3;
|
---|
271 |
|
---|
272 | p0=date&0xFF; p1=((date&0xFF00)>>8)&0xFF;
|
---|
273 | p2=((date&0xFF0000)>>16)&0xFF; p3=((date&0xFF000000)>>24)&0xFF;
|
---|
274 |
|
---|
275 | *second = 2*(p0 & 0x1F);
|
---|
276 | *minute = ((p0>>5)&0xFF) + ((p1&0x7)<<3);
|
---|
277 | *hour = (p1>>3)&0xFF;
|
---|
278 | *day = (p2&0x1F);
|
---|
279 | *month = ((p2>>5)&0xFF) + ((p3&0x1)<<3) - 1;
|
---|
280 | *year = ((p3>>1)&0xFF) + 80;
|
---|
281 | }
|
---|
282 |
|
---|
283 | /**
|
---|
284 | create a unix date (int GMT) from a dos date (which is actually in
|
---|
285 | localtime)
|
---|
286 | **/
|
---|
287 | _PUBLIC_ time_t pull_dos_date(const uint8_t *date_ptr, int zone_offset)
|
---|
288 | {
|
---|
289 | uint32_t dos_date=0;
|
---|
290 | struct tm t;
|
---|
291 | time_t ret;
|
---|
292 |
|
---|
293 | dos_date = IVAL(date_ptr,0);
|
---|
294 |
|
---|
295 | if (dos_date == 0) return (time_t)0;
|
---|
296 |
|
---|
297 | interpret_dos_date(dos_date,&t.tm_year,&t.tm_mon,
|
---|
298 | &t.tm_mday,&t.tm_hour,&t.tm_min,&t.tm_sec);
|
---|
299 | t.tm_isdst = -1;
|
---|
300 |
|
---|
301 | ret = timegm(&t);
|
---|
302 |
|
---|
303 | ret += zone_offset;
|
---|
304 |
|
---|
305 | return ret;
|
---|
306 | }
|
---|
307 |
|
---|
308 | /**
|
---|
309 | like make_unix_date() but the words are reversed
|
---|
310 | **/
|
---|
311 | _PUBLIC_ time_t pull_dos_date2(const uint8_t *date_ptr, int zone_offset)
|
---|
312 | {
|
---|
313 | uint32_t x,x2;
|
---|
314 |
|
---|
315 | x = IVAL(date_ptr,0);
|
---|
316 | x2 = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
|
---|
317 | SIVAL(&x,0,x2);
|
---|
318 |
|
---|
319 | return pull_dos_date((const uint8_t *)&x, zone_offset);
|
---|
320 | }
|
---|
321 |
|
---|
322 | /**
|
---|
323 | create a unix GMT date from a dos date in 32 bit "unix like" format
|
---|
324 | these generally arrive as localtimes, with corresponding DST
|
---|
325 | **/
|
---|
326 | _PUBLIC_ time_t pull_dos_date3(const uint8_t *date_ptr, int zone_offset)
|
---|
327 | {
|
---|
328 | time_t t = (time_t)IVAL(date_ptr,0);
|
---|
329 | if (!null_time(t)) {
|
---|
330 | t += zone_offset;
|
---|
331 | }
|
---|
332 | return t;
|
---|
333 | }
|
---|
334 |
|
---|
335 | /****************************************************************************
|
---|
336 | Return the date and time as a string
|
---|
337 | ****************************************************************************/
|
---|
338 |
|
---|
339 | char *timeval_string(TALLOC_CTX *ctx, const struct timeval *tp, bool hires)
|
---|
340 | {
|
---|
341 | struct timeval_buf tmp;
|
---|
342 | char *result;
|
---|
343 |
|
---|
344 | result = talloc_strdup(ctx, timeval_str_buf(tp, false, hires, &tmp));
|
---|
345 | if (result == NULL) {
|
---|
346 | return NULL;
|
---|
347 | }
|
---|
348 |
|
---|
349 | /*
|
---|
350 | * beautify the talloc_report output
|
---|
351 | *
|
---|
352 | * This is not just cosmetics. A C compiler might in theory make the
|
---|
353 | * talloc_strdup call above a tail call with the tail call
|
---|
354 | * optimization. This would render "tmp" invalid while talloc_strdup
|
---|
355 | * tries to duplicate it. The talloc_set_name_const call below puts
|
---|
356 | * the talloc_strdup call into non-tail position.
|
---|
357 | */
|
---|
358 | talloc_set_name_const(result, result);
|
---|
359 | return result;
|
---|
360 | }
|
---|
361 |
|
---|
362 | char *current_timestring(TALLOC_CTX *ctx, bool hires)
|
---|
363 | {
|
---|
364 | struct timeval tv;
|
---|
365 |
|
---|
366 | GetTimeOfDay(&tv);
|
---|
367 | return timeval_string(ctx, &tv, hires);
|
---|
368 | }
|
---|
369 |
|
---|
370 |
|
---|
371 | /**
|
---|
372 | return a HTTP/1.0 time string
|
---|
373 | **/
|
---|
374 | _PUBLIC_ char *http_timestring(TALLOC_CTX *mem_ctx, time_t t)
|
---|
375 | {
|
---|
376 | char *buf;
|
---|
377 | char tempTime[60];
|
---|
378 | struct tm *tm = localtime(&t);
|
---|
379 |
|
---|
380 | if (t == TIME_T_MAX) {
|
---|
381 | return talloc_strdup(mem_ctx, "never");
|
---|
382 | }
|
---|
383 |
|
---|
384 | if (!tm) {
|
---|
385 | return talloc_asprintf(mem_ctx,"%ld seconds since the Epoch",(long)t);
|
---|
386 | }
|
---|
387 |
|
---|
388 | #ifndef HAVE_STRFTIME
|
---|
389 | buf = talloc_strdup(mem_ctx, asctime(tm));
|
---|
390 | if (buf[strlen(buf)-1] == '\n') {
|
---|
391 | buf[strlen(buf)-1] = 0;
|
---|
392 | }
|
---|
393 | #else
|
---|
394 | strftime(tempTime, sizeof(tempTime)-1, "%a, %d %b %Y %H:%M:%S %Z", tm);
|
---|
395 | buf = talloc_strdup(mem_ctx, tempTime);
|
---|
396 | #endif /* !HAVE_STRFTIME */
|
---|
397 |
|
---|
398 | return buf;
|
---|
399 | }
|
---|
400 |
|
---|
401 | /**
|
---|
402 | Return the date and time as a string
|
---|
403 | **/
|
---|
404 | _PUBLIC_ char *timestring(TALLOC_CTX *mem_ctx, time_t t)
|
---|
405 | {
|
---|
406 | char *TimeBuf;
|
---|
407 | char tempTime[80];
|
---|
408 | struct tm *tm;
|
---|
409 |
|
---|
410 | tm = localtime(&t);
|
---|
411 | if (!tm) {
|
---|
412 | return talloc_asprintf(mem_ctx,
|
---|
413 | "%ld seconds since the Epoch",
|
---|
414 | (long)t);
|
---|
415 | }
|
---|
416 |
|
---|
417 | #ifdef HAVE_STRFTIME
|
---|
418 | /* Some versions of gcc complain about using some special format
|
---|
419 | * specifiers. This is a bug in gcc, not a bug in this code. See a
|
---|
420 | * recent strftime() manual page for details. */
|
---|
421 | strftime(tempTime,sizeof(tempTime)-1,"%a %b %e %X %Y %Z",tm);
|
---|
422 | TimeBuf = talloc_strdup(mem_ctx, tempTime);
|
---|
423 | #else
|
---|
424 | TimeBuf = talloc_strdup(mem_ctx, asctime(tm));
|
---|
425 | if (TimeBuf == NULL) {
|
---|
426 | return NULL;
|
---|
427 | }
|
---|
428 | if (TimeBuf[0] != '\0') {
|
---|
429 | size_t len = strlen(TimeBuf);
|
---|
430 | if (TimeBuf[len - 1] == '\n') {
|
---|
431 | TimeBuf[len - 1] = '\0';
|
---|
432 | }
|
---|
433 | }
|
---|
434 | #endif
|
---|
435 |
|
---|
436 | return TimeBuf;
|
---|
437 | }
|
---|
438 |
|
---|
439 | /**
|
---|
440 | return a talloced string representing a NTTIME for human consumption
|
---|
441 | */
|
---|
442 | _PUBLIC_ const char *nt_time_string(TALLOC_CTX *mem_ctx, NTTIME nt)
|
---|
443 | {
|
---|
444 | time_t t;
|
---|
445 | if (nt == 0) {
|
---|
446 | return "NTTIME(0)";
|
---|
447 | }
|
---|
448 | t = nt_time_to_unix(nt);
|
---|
449 | return timestring(mem_ctx, t);
|
---|
450 | }
|
---|
451 |
|
---|
452 |
|
---|
453 | /**
|
---|
454 | put a NTTIME into a packet
|
---|
455 | */
|
---|
456 | _PUBLIC_ void push_nttime(uint8_t *base, uint16_t offset, NTTIME t)
|
---|
457 | {
|
---|
458 | SBVAL(base, offset, t);
|
---|
459 | }
|
---|
460 |
|
---|
461 | /**
|
---|
462 | pull a NTTIME from a packet
|
---|
463 | */
|
---|
464 | _PUBLIC_ NTTIME pull_nttime(uint8_t *base, uint16_t offset)
|
---|
465 | {
|
---|
466 | NTTIME ret = BVAL(base, offset);
|
---|
467 | return ret;
|
---|
468 | }
|
---|
469 |
|
---|
470 | /**
|
---|
471 | return (tv1 - tv2) in microseconds
|
---|
472 | */
|
---|
473 | _PUBLIC_ int64_t usec_time_diff(const struct timeval *tv1, const struct timeval *tv2)
|
---|
474 | {
|
---|
475 | int64_t sec_diff = tv1->tv_sec - tv2->tv_sec;
|
---|
476 | return (sec_diff * 1000000) + (int64_t)(tv1->tv_usec - tv2->tv_usec);
|
---|
477 | }
|
---|
478 |
|
---|
479 | /**
|
---|
480 | return (tp1 - tp2) in microseconds
|
---|
481 | */
|
---|
482 | _PUBLIC_ int64_t nsec_time_diff(const struct timespec *tp1, const struct timespec *tp2)
|
---|
483 | {
|
---|
484 | int64_t sec_diff = tp1->tv_sec - tp2->tv_sec;
|
---|
485 | return (sec_diff * 1000000000) + (int64_t)(tp1->tv_nsec - tp2->tv_nsec);
|
---|
486 | }
|
---|
487 |
|
---|
488 |
|
---|
489 | /**
|
---|
490 | return a zero timeval
|
---|
491 | */
|
---|
492 | _PUBLIC_ struct timeval timeval_zero(void)
|
---|
493 | {
|
---|
494 | struct timeval tv;
|
---|
495 | tv.tv_sec = 0;
|
---|
496 | tv.tv_usec = 0;
|
---|
497 | return tv;
|
---|
498 | }
|
---|
499 |
|
---|
500 | /**
|
---|
501 | return true if a timeval is zero
|
---|
502 | */
|
---|
503 | _PUBLIC_ bool timeval_is_zero(const struct timeval *tv)
|
---|
504 | {
|
---|
505 | return tv->tv_sec == 0 && tv->tv_usec == 0;
|
---|
506 | }
|
---|
507 |
|
---|
508 | /**
|
---|
509 | return a timeval for the current time
|
---|
510 | */
|
---|
511 | _PUBLIC_ struct timeval timeval_current(void)
|
---|
512 | {
|
---|
513 | struct timeval tv;
|
---|
514 | GetTimeOfDay(&tv);
|
---|
515 | return tv;
|
---|
516 | }
|
---|
517 |
|
---|
518 | /**
|
---|
519 | return a timeval struct with the given elements
|
---|
520 | */
|
---|
521 | _PUBLIC_ struct timeval timeval_set(uint32_t secs, uint32_t usecs)
|
---|
522 | {
|
---|
523 | struct timeval tv;
|
---|
524 | tv.tv_sec = secs;
|
---|
525 | tv.tv_usec = usecs;
|
---|
526 | return tv;
|
---|
527 | }
|
---|
528 |
|
---|
529 |
|
---|
530 | /**
|
---|
531 | return a timeval ofs microseconds after tv
|
---|
532 | */
|
---|
533 | _PUBLIC_ struct timeval timeval_add(const struct timeval *tv,
|
---|
534 | uint32_t secs, uint32_t usecs)
|
---|
535 | {
|
---|
536 | struct timeval tv2 = *tv;
|
---|
537 | const unsigned int million = 1000000;
|
---|
538 | tv2.tv_sec += secs;
|
---|
539 | tv2.tv_usec += usecs;
|
---|
540 | tv2.tv_sec += tv2.tv_usec / million;
|
---|
541 | tv2.tv_usec = tv2.tv_usec % million;
|
---|
542 | return tv2;
|
---|
543 | }
|
---|
544 |
|
---|
545 | /**
|
---|
546 | return the sum of two timeval structures
|
---|
547 | */
|
---|
548 | struct timeval timeval_sum(const struct timeval *tv1,
|
---|
549 | const struct timeval *tv2)
|
---|
550 | {
|
---|
551 | return timeval_add(tv1, tv2->tv_sec, tv2->tv_usec);
|
---|
552 | }
|
---|
553 |
|
---|
554 | /**
|
---|
555 | return a timeval secs/usecs into the future
|
---|
556 | */
|
---|
557 | _PUBLIC_ struct timeval timeval_current_ofs(uint32_t secs, uint32_t usecs)
|
---|
558 | {
|
---|
559 | struct timeval tv = timeval_current();
|
---|
560 | return timeval_add(&tv, secs, usecs);
|
---|
561 | }
|
---|
562 |
|
---|
563 | /**
|
---|
564 | return a timeval milliseconds into the future
|
---|
565 | */
|
---|
566 | _PUBLIC_ struct timeval timeval_current_ofs_msec(uint32_t msecs)
|
---|
567 | {
|
---|
568 | struct timeval tv = timeval_current();
|
---|
569 | return timeval_add(&tv, msecs / 1000, (msecs % 1000) * 1000);
|
---|
570 | }
|
---|
571 |
|
---|
572 | /**
|
---|
573 | return a timeval microseconds into the future
|
---|
574 | */
|
---|
575 | _PUBLIC_ struct timeval timeval_current_ofs_usec(uint32_t usecs)
|
---|
576 | {
|
---|
577 | struct timeval tv = timeval_current();
|
---|
578 | return timeval_add(&tv, usecs / 1000000, usecs % 1000000);
|
---|
579 | }
|
---|
580 |
|
---|
581 | /**
|
---|
582 | compare two timeval structures.
|
---|
583 | Return -1 if tv1 < tv2
|
---|
584 | Return 0 if tv1 == tv2
|
---|
585 | Return 1 if tv1 > tv2
|
---|
586 | */
|
---|
587 | _PUBLIC_ int timeval_compare(const struct timeval *tv1, const struct timeval *tv2)
|
---|
588 | {
|
---|
589 | if (tv1->tv_sec > tv2->tv_sec) return 1;
|
---|
590 | if (tv1->tv_sec < tv2->tv_sec) return -1;
|
---|
591 | if (tv1->tv_usec > tv2->tv_usec) return 1;
|
---|
592 | if (tv1->tv_usec < tv2->tv_usec) return -1;
|
---|
593 | return 0;
|
---|
594 | }
|
---|
595 |
|
---|
596 | /**
|
---|
597 | return true if a timer is in the past
|
---|
598 | */
|
---|
599 | _PUBLIC_ bool timeval_expired(const struct timeval *tv)
|
---|
600 | {
|
---|
601 | struct timeval tv2 = timeval_current();
|
---|
602 | if (tv2.tv_sec > tv->tv_sec) return true;
|
---|
603 | if (tv2.tv_sec < tv->tv_sec) return false;
|
---|
604 | return (tv2.tv_usec >= tv->tv_usec);
|
---|
605 | }
|
---|
606 |
|
---|
607 | /**
|
---|
608 | return the number of seconds elapsed between two times
|
---|
609 | */
|
---|
610 | _PUBLIC_ double timeval_elapsed2(const struct timeval *tv1, const struct timeval *tv2)
|
---|
611 | {
|
---|
612 | return (tv2->tv_sec - tv1->tv_sec) +
|
---|
613 | (tv2->tv_usec - tv1->tv_usec)*1.0e-6;
|
---|
614 | }
|
---|
615 |
|
---|
616 | /**
|
---|
617 | return the number of seconds elapsed since a given time
|
---|
618 | */
|
---|
619 | _PUBLIC_ double timeval_elapsed(const struct timeval *tv)
|
---|
620 | {
|
---|
621 | struct timeval tv2 = timeval_current();
|
---|
622 | return timeval_elapsed2(tv, &tv2);
|
---|
623 | }
|
---|
624 | /**
|
---|
625 | * return the number of seconds elapsed between two times
|
---|
626 | **/
|
---|
627 | _PUBLIC_ double timespec_elapsed2(const struct timespec *ts1,
|
---|
628 | const struct timespec *ts2)
|
---|
629 | {
|
---|
630 | return (ts2->tv_sec - ts1->tv_sec) +
|
---|
631 | (ts2->tv_nsec - ts1->tv_nsec)*1.0e-9;
|
---|
632 | }
|
---|
633 |
|
---|
634 | /**
|
---|
635 | * return the number of seconds elapsed since a given time
|
---|
636 | */
|
---|
637 | _PUBLIC_ double timespec_elapsed(const struct timespec *ts)
|
---|
638 | {
|
---|
639 | struct timespec ts2 = timespec_current();
|
---|
640 | return timespec_elapsed2(ts, &ts2);
|
---|
641 | }
|
---|
642 |
|
---|
643 | /**
|
---|
644 | return the lesser of two timevals
|
---|
645 | */
|
---|
646 | _PUBLIC_ struct timeval timeval_min(const struct timeval *tv1,
|
---|
647 | const struct timeval *tv2)
|
---|
648 | {
|
---|
649 | if (tv1->tv_sec < tv2->tv_sec) return *tv1;
|
---|
650 | if (tv1->tv_sec > tv2->tv_sec) return *tv2;
|
---|
651 | if (tv1->tv_usec < tv2->tv_usec) return *tv1;
|
---|
652 | return *tv2;
|
---|
653 | }
|
---|
654 |
|
---|
655 | /**
|
---|
656 | return the greater of two timevals
|
---|
657 | */
|
---|
658 | _PUBLIC_ struct timeval timeval_max(const struct timeval *tv1,
|
---|
659 | const struct timeval *tv2)
|
---|
660 | {
|
---|
661 | if (tv1->tv_sec > tv2->tv_sec) return *tv1;
|
---|
662 | if (tv1->tv_sec < tv2->tv_sec) return *tv2;
|
---|
663 | if (tv1->tv_usec > tv2->tv_usec) return *tv1;
|
---|
664 | return *tv2;
|
---|
665 | }
|
---|
666 |
|
---|
667 | /**
|
---|
668 | return the difference between two timevals as a timeval
|
---|
669 | if tv1 comes after tv2, then return a zero timeval
|
---|
670 | (this is *tv2 - *tv1)
|
---|
671 | */
|
---|
672 | _PUBLIC_ struct timeval timeval_until(const struct timeval *tv1,
|
---|
673 | const struct timeval *tv2)
|
---|
674 | {
|
---|
675 | struct timeval t;
|
---|
676 | if (timeval_compare(tv1, tv2) >= 0) {
|
---|
677 | return timeval_zero();
|
---|
678 | }
|
---|
679 | t.tv_sec = tv2->tv_sec - tv1->tv_sec;
|
---|
680 | if (tv1->tv_usec > tv2->tv_usec) {
|
---|
681 | t.tv_sec--;
|
---|
682 | t.tv_usec = 1000000 - (tv1->tv_usec - tv2->tv_usec);
|
---|
683 | } else {
|
---|
684 | t.tv_usec = tv2->tv_usec - tv1->tv_usec;
|
---|
685 | }
|
---|
686 | return t;
|
---|
687 | }
|
---|
688 |
|
---|
689 |
|
---|
690 | /**
|
---|
691 | convert a timeval to a NTTIME
|
---|
692 | */
|
---|
693 | _PUBLIC_ NTTIME timeval_to_nttime(const struct timeval *tv)
|
---|
694 | {
|
---|
695 | return 10*(tv->tv_usec +
|
---|
696 | ((TIME_FIXUP_CONSTANT + (uint64_t)tv->tv_sec) * 1000000));
|
---|
697 | }
|
---|
698 |
|
---|
699 | /**
|
---|
700 | convert a NTTIME to a timeval
|
---|
701 | */
|
---|
702 | _PUBLIC_ void nttime_to_timeval(struct timeval *tv, NTTIME t)
|
---|
703 | {
|
---|
704 | if (tv == NULL) return;
|
---|
705 |
|
---|
706 | t += 10/2;
|
---|
707 | t /= 10;
|
---|
708 | t -= TIME_FIXUP_CONSTANT*1000*1000;
|
---|
709 |
|
---|
710 | tv->tv_sec = t / 1000000;
|
---|
711 |
|
---|
712 | if (TIME_T_MIN > tv->tv_sec || tv->tv_sec > TIME_T_MAX) {
|
---|
713 | tv->tv_sec = 0;
|
---|
714 | tv->tv_usec = 0;
|
---|
715 | return;
|
---|
716 | }
|
---|
717 |
|
---|
718 | tv->tv_usec = t - tv->tv_sec*1000000;
|
---|
719 | }
|
---|
720 |
|
---|
721 | /*******************************************************************
|
---|
722 | yield the difference between *A and *B, in seconds, ignoring leap seconds
|
---|
723 | ********************************************************************/
|
---|
724 | static int tm_diff(struct tm *a, struct tm *b)
|
---|
725 | {
|
---|
726 | int ay = a->tm_year + (1900 - 1);
|
---|
727 | int by = b->tm_year + (1900 - 1);
|
---|
728 | int intervening_leap_days =
|
---|
729 | (ay/4 - by/4) - (ay/100 - by/100) + (ay/400 - by/400);
|
---|
730 | int years = ay - by;
|
---|
731 | int days = 365*years + intervening_leap_days + (a->tm_yday - b->tm_yday);
|
---|
732 | int hours = 24*days + (a->tm_hour - b->tm_hour);
|
---|
733 | int minutes = 60*hours + (a->tm_min - b->tm_min);
|
---|
734 | int seconds = 60*minutes + (a->tm_sec - b->tm_sec);
|
---|
735 |
|
---|
736 | return seconds;
|
---|
737 | }
|
---|
738 |
|
---|
739 |
|
---|
740 | /**
|
---|
741 | return the UTC offset in seconds west of UTC, or 0 if it cannot be determined
|
---|
742 | */
|
---|
743 | _PUBLIC_ int get_time_zone(time_t t)
|
---|
744 | {
|
---|
745 | struct tm *tm = gmtime(&t);
|
---|
746 | struct tm tm_utc;
|
---|
747 | if (!tm)
|
---|
748 | return 0;
|
---|
749 | tm_utc = *tm;
|
---|
750 | tm = localtime(&t);
|
---|
751 | if (!tm)
|
---|
752 | return 0;
|
---|
753 | return tm_diff(&tm_utc,tm);
|
---|
754 | }
|
---|
755 |
|
---|
756 | struct timespec nt_time_to_unix_timespec(NTTIME nt)
|
---|
757 | {
|
---|
758 | int64_t d;
|
---|
759 | struct timespec ret;
|
---|
760 |
|
---|
761 | if (nt == 0 || nt == (int64_t)-1) {
|
---|
762 | ret.tv_sec = 0;
|
---|
763 | ret.tv_nsec = 0;
|
---|
764 | return ret;
|
---|
765 | }
|
---|
766 |
|
---|
767 | d = (int64_t)nt;
|
---|
768 | /* d is now in 100ns units, since jan 1st 1601".
|
---|
769 | Save off the ns fraction. */
|
---|
770 |
|
---|
771 | /*
|
---|
772 | * Take the last seven decimal digits and multiply by 100.
|
---|
773 | * to convert from 100ns units to 1ns units.
|
---|
774 | */
|
---|
775 | ret.tv_nsec = (long) ((d % (1000 * 1000 * 10)) * 100);
|
---|
776 |
|
---|
777 | /* Convert to seconds */
|
---|
778 | d /= 1000*1000*10;
|
---|
779 |
|
---|
780 | /* Now adjust by 369 years to make the secs since 1970 */
|
---|
781 | d -= TIME_FIXUP_CONSTANT_INT;
|
---|
782 |
|
---|
783 | if (d <= (int64_t)TIME_T_MIN) {
|
---|
784 | ret.tv_sec = TIME_T_MIN;
|
---|
785 | ret.tv_nsec = 0;
|
---|
786 | return ret;
|
---|
787 | }
|
---|
788 |
|
---|
789 | if (d >= (int64_t)TIME_T_MAX) {
|
---|
790 | ret.tv_sec = TIME_T_MAX;
|
---|
791 | ret.tv_nsec = 0;
|
---|
792 | return ret;
|
---|
793 | }
|
---|
794 |
|
---|
795 | ret.tv_sec = (time_t)d;
|
---|
796 | return ret;
|
---|
797 | }
|
---|
798 |
|
---|
799 |
|
---|
800 | /**
|
---|
801 | check if 2 NTTIMEs are equal.
|
---|
802 | */
|
---|
803 | bool nt_time_equal(NTTIME *t1, NTTIME *t2)
|
---|
804 | {
|
---|
805 | return *t1 == *t2;
|
---|
806 | }
|
---|
807 |
|
---|
808 | /**
|
---|
809 | Check if it's a null timespec.
|
---|
810 | **/
|
---|
811 |
|
---|
812 | bool null_timespec(struct timespec ts)
|
---|
813 | {
|
---|
814 | return ts.tv_sec == 0 ||
|
---|
815 | ts.tv_sec == (time_t)0xFFFFFFFF ||
|
---|
816 | ts.tv_sec == (time_t)-1;
|
---|
817 | }
|
---|
818 |
|
---|
819 | /****************************************************************************
|
---|
820 | Convert a normalized timeval to a timespec.
|
---|
821 | ****************************************************************************/
|
---|
822 |
|
---|
823 | struct timespec convert_timeval_to_timespec(const struct timeval tv)
|
---|
824 | {
|
---|
825 | struct timespec ts;
|
---|
826 | ts.tv_sec = tv.tv_sec;
|
---|
827 | ts.tv_nsec = tv.tv_usec * 1000;
|
---|
828 | return ts;
|
---|
829 | }
|
---|
830 |
|
---|
831 | /****************************************************************************
|
---|
832 | Convert a normalized timespec to a timeval.
|
---|
833 | ****************************************************************************/
|
---|
834 |
|
---|
835 | struct timeval convert_timespec_to_timeval(const struct timespec ts)
|
---|
836 | {
|
---|
837 | struct timeval tv;
|
---|
838 | tv.tv_sec = ts.tv_sec;
|
---|
839 | tv.tv_usec = ts.tv_nsec / 1000;
|
---|
840 | return tv;
|
---|
841 | }
|
---|
842 |
|
---|
843 | /****************************************************************************
|
---|
844 | Return a timespec for the current time
|
---|
845 | ****************************************************************************/
|
---|
846 |
|
---|
847 | _PUBLIC_ struct timespec timespec_current(void)
|
---|
848 | {
|
---|
849 | struct timespec ts;
|
---|
850 | clock_gettime(CLOCK_REALTIME, &ts);
|
---|
851 | return ts;
|
---|
852 | }
|
---|
853 |
|
---|
854 | /****************************************************************************
|
---|
855 | Return the lesser of two timespecs.
|
---|
856 | ****************************************************************************/
|
---|
857 |
|
---|
858 | struct timespec timespec_min(const struct timespec *ts1,
|
---|
859 | const struct timespec *ts2)
|
---|
860 | {
|
---|
861 | if (ts1->tv_sec < ts2->tv_sec) return *ts1;
|
---|
862 | if (ts1->tv_sec > ts2->tv_sec) return *ts2;
|
---|
863 | if (ts1->tv_nsec < ts2->tv_nsec) return *ts1;
|
---|
864 | return *ts2;
|
---|
865 | }
|
---|
866 |
|
---|
867 | /****************************************************************************
|
---|
868 | compare two timespec structures.
|
---|
869 | Return -1 if ts1 < ts2
|
---|
870 | Return 0 if ts1 == ts2
|
---|
871 | Return 1 if ts1 > ts2
|
---|
872 | ****************************************************************************/
|
---|
873 |
|
---|
874 | _PUBLIC_ int timespec_compare(const struct timespec *ts1, const struct timespec *ts2)
|
---|
875 | {
|
---|
876 | if (ts1->tv_sec > ts2->tv_sec) return 1;
|
---|
877 | if (ts1->tv_sec < ts2->tv_sec) return -1;
|
---|
878 | if (ts1->tv_nsec > ts2->tv_nsec) return 1;
|
---|
879 | if (ts1->tv_nsec < ts2->tv_nsec) return -1;
|
---|
880 | return 0;
|
---|
881 | }
|
---|
882 |
|
---|
883 | /****************************************************************************
|
---|
884 | Round up a timespec if nsec > 500000000, round down if lower,
|
---|
885 | then zero nsec.
|
---|
886 | ****************************************************************************/
|
---|
887 |
|
---|
888 | void round_timespec_to_sec(struct timespec *ts)
|
---|
889 | {
|
---|
890 | ts->tv_sec = convert_timespec_to_time_t(*ts);
|
---|
891 | ts->tv_nsec = 0;
|
---|
892 | }
|
---|
893 |
|
---|
894 | /****************************************************************************
|
---|
895 | Round a timespec to usec value.
|
---|
896 | ****************************************************************************/
|
---|
897 |
|
---|
898 | void round_timespec_to_usec(struct timespec *ts)
|
---|
899 | {
|
---|
900 | struct timeval tv = convert_timespec_to_timeval(*ts);
|
---|
901 | *ts = convert_timeval_to_timespec(tv);
|
---|
902 | while (ts->tv_nsec > 1000000000) {
|
---|
903 | ts->tv_sec += 1;
|
---|
904 | ts->tv_nsec -= 1000000000;
|
---|
905 | }
|
---|
906 | }
|
---|
907 |
|
---|
908 | /****************************************************************************
|
---|
909 | Put a 8 byte filetime from a struct timespec. Uses GMT.
|
---|
910 | ****************************************************************************/
|
---|
911 |
|
---|
912 | _PUBLIC_ NTTIME unix_timespec_to_nt_time(struct timespec ts)
|
---|
913 | {
|
---|
914 | uint64_t d;
|
---|
915 |
|
---|
916 | if (ts.tv_sec ==0 && ts.tv_nsec == 0) {
|
---|
917 | return 0;
|
---|
918 | }
|
---|
919 | if (ts.tv_sec == TIME_T_MAX) {
|
---|
920 | return 0x7fffffffffffffffLL;
|
---|
921 | }
|
---|
922 | if (ts.tv_sec == (time_t)-1) {
|
---|
923 | return (uint64_t)-1;
|
---|
924 | }
|
---|
925 |
|
---|
926 | d = ts.tv_sec;
|
---|
927 | d += TIME_FIXUP_CONSTANT_INT;
|
---|
928 | d *= 1000*1000*10;
|
---|
929 | /* d is now in 100ns units. */
|
---|
930 | d += (ts.tv_nsec / 100);
|
---|
931 |
|
---|
932 | return d;
|
---|
933 | }
|
---|