source: vendor/current/lib/util/asn1.c

Last change on this file was 988, checked in by Silvan Scherrer, 9 years ago

Samba Server: update vendor to version 4.4.3

File size: 24.4 KB
Line 
1/*
2 Unix SMB/CIFS implementation.
3 simple ASN1 routines
4 Copyright (C) Andrew Tridgell 2001
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
18*/
19
20#include "replace.h"
21#include "system/locale.h"
22#include "lib/util/asn1.h"
23#include "lib/util/debug.h"
24#include "lib/util/samba_util.h"
25
26struct nesting {
27 off_t start;
28 size_t taglen; /* for parsing */
29 struct nesting *next;
30};
31
32
33struct asn1_data {
34 uint8_t *data;
35 size_t length;
36 off_t ofs;
37 struct nesting *nesting;
38 bool has_error;
39};
40
41/* allocate an asn1 structure */
42struct asn1_data *asn1_init(TALLOC_CTX *mem_ctx)
43{
44 struct asn1_data *ret = talloc_zero(mem_ctx, struct asn1_data);
45 if (ret == NULL) {
46 DEBUG(0,("asn1_init failed! out of memory\n"));
47 }
48 return ret;
49}
50
51/* free an asn1 structure */
52void asn1_free(struct asn1_data *data)
53{
54 talloc_free(data);
55}
56
57bool asn1_has_error(const struct asn1_data *data)
58{
59 return data->has_error;
60}
61
62void asn1_set_error(struct asn1_data *data)
63{
64 data->has_error = true;
65}
66
67bool asn1_has_nesting(const struct asn1_data *data)
68{
69 return data->nesting != NULL;
70}
71
72off_t asn1_current_ofs(const struct asn1_data *data)
73{
74 return data->ofs;
75}
76
77/* write to the ASN1 buffer, advancing the buffer pointer */
78bool asn1_write(struct asn1_data *data, const void *p, int len)
79{
80 if (data->has_error) return false;
81
82 if ((len < 0) || (data->ofs + (size_t)len < data->ofs)) {
83 data->has_error = true;
84 return false;
85 }
86
87 if (data->length < data->ofs+len) {
88 uint8_t *newp;
89 newp = talloc_realloc(data, data->data, uint8_t, data->ofs+len);
90 if (!newp) {
91 data->has_error = true;
92 return false;
93 }
94 data->data = newp;
95 data->length = data->ofs+len;
96 }
97 memcpy(data->data + data->ofs, p, len);
98 data->ofs += len;
99 return true;
100}
101
102/* useful fn for writing a uint8_t */
103bool asn1_write_uint8(struct asn1_data *data, uint8_t v)
104{
105 return asn1_write(data, &v, 1);
106}
107
108/* push a tag onto the asn1 data buffer. Used for nested structures */
109bool asn1_push_tag(struct asn1_data *data, uint8_t tag)
110{
111 struct nesting *nesting;
112
113 if (!asn1_write_uint8(data, tag)) {
114 return false;
115 }
116 nesting = talloc(data, struct nesting);
117 if (!nesting) {
118 data->has_error = true;
119 return false;
120 }
121
122 nesting->start = data->ofs;
123 nesting->next = data->nesting;
124 data->nesting = nesting;
125 return asn1_write_uint8(data, 0xff);
126}
127
128/* pop a tag */
129bool asn1_pop_tag(struct asn1_data *data)
130{
131 struct nesting *nesting;
132 size_t len;
133
134 if (data->has_error) {
135 return false;
136 }
137
138 nesting = data->nesting;
139
140 if (!nesting) {
141 data->has_error = true;
142 return false;
143 }
144 len = data->ofs - (nesting->start+1);
145 /* yes, this is ugly. We don't know in advance how many bytes the length
146 of a tag will take, so we assumed 1 byte. If we were wrong then we
147 need to correct our mistake */
148 if (len > 0xFFFFFF) {
149 data->data[nesting->start] = 0x84;
150 if (!asn1_write_uint8(data, 0)) return false;
151 if (!asn1_write_uint8(data, 0)) return false;
152 if (!asn1_write_uint8(data, 0)) return false;
153 if (!asn1_write_uint8(data, 0)) return false;
154 memmove(data->data+nesting->start+5, data->data+nesting->start+1, len);
155 data->data[nesting->start+1] = (len>>24) & 0xFF;
156 data->data[nesting->start+2] = (len>>16) & 0xFF;
157 data->data[nesting->start+3] = (len>>8) & 0xFF;
158 data->data[nesting->start+4] = len&0xff;
159 } else if (len > 0xFFFF) {
160 data->data[nesting->start] = 0x83;
161 if (!asn1_write_uint8(data, 0)) return false;
162 if (!asn1_write_uint8(data, 0)) return false;
163 if (!asn1_write_uint8(data, 0)) return false;
164 memmove(data->data+nesting->start+4, data->data+nesting->start+1, len);
165 data->data[nesting->start+1] = (len>>16) & 0xFF;
166 data->data[nesting->start+2] = (len>>8) & 0xFF;
167 data->data[nesting->start+3] = len&0xff;
168 } else if (len > 255) {
169 data->data[nesting->start] = 0x82;
170 if (!asn1_write_uint8(data, 0)) return false;
171 if (!asn1_write_uint8(data, 0)) return false;
172 memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
173 data->data[nesting->start+1] = len>>8;
174 data->data[nesting->start+2] = len&0xff;
175 } else if (len > 127) {
176 data->data[nesting->start] = 0x81;
177 if (!asn1_write_uint8(data, 0)) return false;
178 memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
179 data->data[nesting->start+1] = len;
180 } else {
181 data->data[nesting->start] = len;
182 }
183
184 data->nesting = nesting->next;
185 talloc_free(nesting);
186 return true;
187}
188
189/* "i" is the one's complement representation, as is the normal result of an
190 * implicit signed->unsigned conversion */
191
192static bool push_int_bigendian(struct asn1_data *data, unsigned int i, bool negative)
193{
194 uint8_t lowest = i & 0xFF;
195
196 i = i >> 8;
197 if (i != 0)
198 if (!push_int_bigendian(data, i, negative))
199 return false;
200
201 if (data->nesting->start+1 == data->ofs) {
202
203 /* We did not write anything yet, looking at the highest
204 * valued byte */
205
206 if (negative) {
207 /* Don't write leading 0xff's */
208 if (lowest == 0xFF)
209 return true;
210
211 if ((lowest & 0x80) == 0) {
212 /* The only exception for a leading 0xff is if
213 * the highest bit is 0, which would indicate
214 * a positive value */
215 if (!asn1_write_uint8(data, 0xff))
216 return false;
217 }
218 } else {
219 if (lowest & 0x80) {
220 /* The highest bit of a positive integer is 1,
221 * this would indicate a negative number. Push
222 * a 0 to indicate a positive one */
223 if (!asn1_write_uint8(data, 0))
224 return false;
225 }
226 }
227 }
228
229 return asn1_write_uint8(data, lowest);
230}
231
232/* write an Integer without the tag framing. Needed for example for the LDAP
233 * Abandon Operation */
234
235bool asn1_write_implicit_Integer(struct asn1_data *data, int i)
236{
237 if (data->has_error) {
238 return false;
239 }
240
241 if (i == -1) {
242 /* -1 is special as it consists of all-0xff bytes. In
243 push_int_bigendian this is the only case that is not
244 properly handled, as all 0xff bytes would be handled as
245 leading ones to be ignored. */
246 return asn1_write_uint8(data, 0xff);
247 } else {
248 return push_int_bigendian(data, i, i<0);
249 }
250}
251
252
253/* write an integer */
254bool asn1_write_Integer(struct asn1_data *data, int i)
255{
256 if (!asn1_push_tag(data, ASN1_INTEGER)) return false;
257 if (!asn1_write_implicit_Integer(data, i)) return false;
258 return asn1_pop_tag(data);
259}
260
261/* write a BIT STRING */
262bool asn1_write_BitString(struct asn1_data *data, const void *p, size_t length, uint8_t padding)
263{
264 if (!asn1_push_tag(data, ASN1_BIT_STRING)) return false;
265 if (!asn1_write_uint8(data, padding)) return false;
266 if (!asn1_write(data, p, length)) return false;
267 return asn1_pop_tag(data);
268}
269
270bool ber_write_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *OID)
271{
272 unsigned int v, v2;
273 const char *p = (const char *)OID;
274 char *newp;
275 int i;
276
277 if (!isdigit(*p)) return false;
278 v = strtoul(p, &newp, 10);
279 if (newp[0] != '.') return false;
280 p = newp + 1;
281
282 if (!isdigit(*p)) return false;
283 v2 = strtoul(p, &newp, 10);
284 if (newp[0] != '.') return false;
285 p = newp + 1;
286
287 /*the ber representation can't use more space than the string one */
288 *blob = data_blob_talloc(mem_ctx, NULL, strlen(OID));
289 if (!blob->data) return false;
290
291 blob->data[0] = 40*v + v2;
292
293 i = 1;
294 while (*p) {
295 if (!isdigit(*p)) return false;
296 v = strtoul(p, &newp, 10);
297 if (newp[0] == '.') {
298 p = newp + 1;
299 /* check for empty last component */
300 if (!*p) return false;
301 } else if (newp[0] == '\0') {
302 p = newp;
303 } else {
304 data_blob_free(blob);
305 return false;
306 }
307 if (v >= (1<<28)) blob->data[i++] = (0x80 | ((v>>28)&0x7f));
308 if (v >= (1<<21)) blob->data[i++] = (0x80 | ((v>>21)&0x7f));
309 if (v >= (1<<14)) blob->data[i++] = (0x80 | ((v>>14)&0x7f));
310 if (v >= (1<<7)) blob->data[i++] = (0x80 | ((v>>7)&0x7f));
311 blob->data[i++] = (v&0x7f);
312 }
313
314 blob->length = i;
315
316 return true;
317}
318
319/**
320 * Serialize partial OID string.
321 * Partial OIDs are in the form:
322 * 1:2.5.6:0x81
323 * 1:2.5.6:0x8182
324 */
325bool ber_write_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *partial_oid)
326{
327 TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
328 char *oid = talloc_strdup(tmp_ctx, partial_oid);
329 char *p;
330
331 /* truncate partial part so ber_write_OID_String() works */
332 p = strchr(oid, ':');
333 if (p) {
334 *p = '\0';
335 p++;
336 }
337
338 if (!ber_write_OID_String(mem_ctx, blob, oid)) {
339 talloc_free(tmp_ctx);
340 return false;
341 }
342
343 /* Add partially encoded sub-identifier */
344 if (p) {
345 DATA_BLOB tmp_blob = strhex_to_data_blob(tmp_ctx, p);
346 if (!data_blob_append(mem_ctx, blob, tmp_blob.data,
347 tmp_blob.length)) {
348 talloc_free(tmp_ctx);
349 return false;
350 }
351 }
352
353 talloc_free(tmp_ctx);
354
355 return true;
356}
357
358/* write an object ID to a ASN1 buffer */
359bool asn1_write_OID(struct asn1_data *data, const char *OID)
360{
361 DATA_BLOB blob;
362
363 if (!asn1_push_tag(data, ASN1_OID)) return false;
364
365 if (!ber_write_OID_String(NULL, &blob, OID)) {
366 data->has_error = true;
367 return false;
368 }
369
370 if (!asn1_write(data, blob.data, blob.length)) {
371 data_blob_free(&blob);
372 data->has_error = true;
373 return false;
374 }
375 data_blob_free(&blob);
376 return asn1_pop_tag(data);
377}
378
379/* write an octet string */
380bool asn1_write_OctetString(struct asn1_data *data, const void *p, size_t length)
381{
382 if (!asn1_push_tag(data, ASN1_OCTET_STRING)) return false;
383 if (!asn1_write(data, p, length)) return false;
384 return asn1_pop_tag(data);
385}
386
387/* write a LDAP string */
388bool asn1_write_LDAPString(struct asn1_data *data, const char *s)
389{
390 return asn1_write(data, s, strlen(s));
391}
392
393/* write a LDAP string from a DATA_BLOB */
394bool asn1_write_DATA_BLOB_LDAPString(struct asn1_data *data, const DATA_BLOB *s)
395{
396 return asn1_write(data, s->data, s->length);
397}
398
399/* write a general string */
400bool asn1_write_GeneralString(struct asn1_data *data, const char *s)
401{
402 if (!asn1_push_tag(data, ASN1_GENERAL_STRING)) return false;
403 if (!asn1_write_LDAPString(data, s)) return false;
404 return asn1_pop_tag(data);
405}
406
407bool asn1_write_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
408{
409 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
410 if (!asn1_write(data, blob->data, blob->length)) return false;
411 return asn1_pop_tag(data);
412}
413
414/* write a BOOLEAN */
415bool asn1_write_BOOLEAN(struct asn1_data *data, bool v)
416{
417 if (!asn1_push_tag(data, ASN1_BOOLEAN)) return false;
418 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
419 return asn1_pop_tag(data);
420}
421
422bool asn1_read_BOOLEAN(struct asn1_data *data, bool *v)
423{
424 uint8_t tmp = 0;
425 if (!asn1_start_tag(data, ASN1_BOOLEAN)) return false;
426 *v = false;
427 if (!asn1_read_uint8(data, &tmp)) return false;
428 if (tmp == 0xFF) {
429 *v = true;
430 }
431 return asn1_end_tag(data);
432}
433
434/* write a BOOLEAN in a simple context */
435bool asn1_write_BOOLEAN_context(struct asn1_data *data, bool v, int context)
436{
437 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
438 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
439 return asn1_pop_tag(data);
440}
441
442bool asn1_read_BOOLEAN_context(struct asn1_data *data, bool *v, int context)
443{
444 uint8_t tmp = 0;
445 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
446 *v = false;
447 if (!asn1_read_uint8(data, &tmp)) return false;
448 if (tmp == 0xFF) {
449 *v = true;
450 }
451 return asn1_end_tag(data);
452}
453
454/* check a BOOLEAN */
455bool asn1_check_BOOLEAN(struct asn1_data *data, bool v)
456{
457 uint8_t b = 0;
458
459 if (!asn1_read_uint8(data, &b)) return false;
460 if (b != ASN1_BOOLEAN) {
461 data->has_error = true;
462 return false;
463 }
464 if (!asn1_read_uint8(data, &b)) return false;
465 if (b != v) {
466 data->has_error = true;
467 return false;
468 }
469 return !data->has_error;
470}
471
472
473/* load a struct asn1_data structure with a lump of data, ready to be parsed */
474bool asn1_load(struct asn1_data *data, DATA_BLOB blob)
475{
476 ZERO_STRUCTP(data);
477 data->data = (uint8_t *)talloc_memdup(data, blob.data, blob.length);
478 if (!data->data) {
479 data->has_error = true;
480 return false;
481 }
482 data->length = blob.length;
483 return true;
484}
485
486/* Peek into an ASN1 buffer, not advancing the pointer */
487bool asn1_peek(struct asn1_data *data, void *p, int len)
488{
489 if (data->has_error)
490 return false;
491
492 if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len)
493 return false;
494
495 if (data->ofs + len > data->length) {
496 /* we need to mark the buffer as consumed, so the caller knows
497 this was an out of data error, and not a decode error */
498 data->ofs = data->length;
499 return false;
500 }
501
502 memcpy(p, data->data + data->ofs, len);
503 return true;
504}
505
506/* read from a ASN1 buffer, advancing the buffer pointer */
507bool asn1_read(struct asn1_data *data, void *p, int len)
508{
509 if (!asn1_peek(data, p, len)) {
510 data->has_error = true;
511 return false;
512 }
513
514 data->ofs += len;
515 return true;
516}
517
518/* read a uint8_t from a ASN1 buffer */
519bool asn1_read_uint8(struct asn1_data *data, uint8_t *v)
520{
521 return asn1_read(data, v, 1);
522}
523
524bool asn1_peek_uint8(struct asn1_data *data, uint8_t *v)
525{
526 return asn1_peek(data, v, 1);
527}
528
529bool asn1_peek_tag(struct asn1_data *data, uint8_t tag)
530{
531 uint8_t b;
532
533 if (asn1_tag_remaining(data) <= 0) {
534 return false;
535 }
536
537 if (!asn1_peek_uint8(data, &b))
538 return false;
539
540 return (b == tag);
541}
542
543/*
544 * just get the needed size the tag would consume
545 */
546static bool asn1_peek_tag_needed_size(struct asn1_data *data, uint8_t tag,
547 size_t *size)
548{
549 off_t start_ofs = data->ofs;
550 uint8_t b;
551 size_t taglen = 0;
552
553 if (data->has_error) {
554 return false;
555 }
556
557 if (!asn1_read_uint8(data, &b)) {
558 data->ofs = start_ofs;
559 data->has_error = false;
560 return false;
561 }
562
563 if (b != tag) {
564 data->ofs = start_ofs;
565 data->has_error = false;
566 return false;
567 }
568
569 if (!asn1_read_uint8(data, &b)) {
570 data->ofs = start_ofs;
571 data->has_error = false;
572 return false;
573 }
574
575 if (b & 0x80) {
576 int n = b & 0x7f;
577 if (!asn1_read_uint8(data, &b)) {
578 data->ofs = start_ofs;
579 data->has_error = false;
580 return false;
581 }
582 if (n > 4) {
583 /*
584 * We should not allow more than 4 bytes
585 * for the encoding of the tag length.
586 *
587 * Otherwise we'd overflow the taglen
588 * variable on 32 bit systems.
589 */
590 data->ofs = start_ofs;
591 data->has_error = false;
592 return false;
593 }
594 taglen = b;
595 while (n > 1) {
596 if (!asn1_read_uint8(data, &b)) {
597 data->ofs = start_ofs;
598 data->has_error = false;
599 return false;
600 }
601 taglen = (taglen << 8) | b;
602 n--;
603 }
604 } else {
605 taglen = b;
606 }
607
608 *size = (data->ofs - start_ofs) + taglen;
609
610 data->ofs = start_ofs;
611 data->has_error = false;
612 return true;
613}
614
615/* start reading a nested asn1 structure */
616bool asn1_start_tag(struct asn1_data *data, uint8_t tag)
617{
618 uint8_t b;
619 struct nesting *nesting;
620
621 if (!asn1_read_uint8(data, &b))
622 return false;
623
624 if (b != tag) {
625 data->has_error = true;
626 return false;
627 }
628 nesting = talloc(data, struct nesting);
629 if (!nesting) {
630 data->has_error = true;
631 return false;
632 }
633
634 if (!asn1_read_uint8(data, &b)) {
635 return false;
636 }
637
638 if (b & 0x80) {
639 int n = b & 0x7f;
640 if (!asn1_read_uint8(data, &b))
641 return false;
642 nesting->taglen = b;
643 while (n > 1) {
644 if (!asn1_read_uint8(data, &b))
645 return false;
646 nesting->taglen = (nesting->taglen << 8) | b;
647 n--;
648 }
649 } else {
650 nesting->taglen = b;
651 }
652 nesting->start = data->ofs;
653 nesting->next = data->nesting;
654 data->nesting = nesting;
655 if (asn1_tag_remaining(data) == -1) {
656 return false;
657 }
658 return !data->has_error;
659}
660
661/* stop reading a tag */
662bool asn1_end_tag(struct asn1_data *data)
663{
664 struct nesting *nesting;
665
666 /* make sure we read it all */
667 if (asn1_tag_remaining(data) != 0) {
668 data->has_error = true;
669 return false;
670 }
671
672 nesting = data->nesting;
673
674 if (!nesting) {
675 data->has_error = true;
676 return false;
677 }
678
679 data->nesting = nesting->next;
680 talloc_free(nesting);
681 return true;
682}
683
684/* work out how many bytes are left in this nested tag */
685int asn1_tag_remaining(struct asn1_data *data)
686{
687 int remaining;
688 if (data->has_error) {
689 return -1;
690 }
691
692 if (!data->nesting) {
693 data->has_error = true;
694 return -1;
695 }
696 remaining = data->nesting->taglen - (data->ofs - data->nesting->start);
697 if (remaining > (data->length - data->ofs)) {
698 data->has_error = true;
699 return -1;
700 }
701 return remaining;
702}
703
704/**
705 * Internal implementation for reading binary OIDs
706 * Reading is done as far in the buffer as valid OID
707 * till buffer ends or not valid sub-identifier is found.
708 */
709static bool _ber_read_OID_String_impl(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
710 char **OID, size_t *bytes_eaten)
711{
712 int i;
713 uint8_t *b;
714 unsigned int v;
715 char *tmp_oid = NULL;
716
717 if (blob.length < 2) return false;
718
719 b = blob.data;
720
721 tmp_oid = talloc_asprintf(mem_ctx, "%u", b[0]/40);
722 if (!tmp_oid) goto nomem;
723 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", b[0]%40);
724 if (!tmp_oid) goto nomem;
725
726 if (bytes_eaten != NULL) {
727 *bytes_eaten = 0;
728 }
729
730 for(i = 1, v = 0; i < blob.length; i++) {
731 v = (v<<7) | (b[i]&0x7f);
732 if ( ! (b[i] & 0x80)) {
733 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", v);
734 v = 0;
735 if (bytes_eaten)
736 *bytes_eaten = i+1;
737 }
738 if (!tmp_oid) goto nomem;
739 }
740
741 *OID = tmp_oid;
742 return true;
743
744nomem:
745 return false;
746}
747
748/* read an object ID from a data blob */
749bool ber_read_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob, char **OID)
750{
751 size_t bytes_eaten;
752
753 if (!_ber_read_OID_String_impl(mem_ctx, blob, OID, &bytes_eaten))
754 return false;
755
756 return (bytes_eaten == blob.length);
757}
758
759/**
760 * Deserialize partial OID string.
761 * Partial OIDs are in the form:
762 * 1:2.5.6:0x81
763 * 1:2.5.6:0x8182
764 */
765bool ber_read_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
766 char **partial_oid)
767{
768 size_t bytes_left;
769 size_t bytes_eaten;
770 char *identifier = NULL;
771 char *tmp_oid = NULL;
772
773 if (!_ber_read_OID_String_impl(mem_ctx, blob, &tmp_oid, &bytes_eaten))
774 return false;
775
776 if (bytes_eaten < blob.length) {
777 bytes_left = blob.length - bytes_eaten;
778 identifier = hex_encode_talloc(mem_ctx, &blob.data[bytes_eaten], bytes_left);
779 if (!identifier) goto nomem;
780
781 *partial_oid = talloc_asprintf_append_buffer(tmp_oid, ":0x%s", identifier);
782 if (!*partial_oid) goto nomem;
783 TALLOC_FREE(identifier);
784 } else {
785 *partial_oid = tmp_oid;
786 }
787
788 return true;
789
790nomem:
791 TALLOC_FREE(identifier);
792 TALLOC_FREE(tmp_oid);
793 return false;
794}
795
796/* read an object ID from a ASN1 buffer */
797bool asn1_read_OID(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **OID)
798{
799 DATA_BLOB blob;
800 int len;
801
802 if (!asn1_start_tag(data, ASN1_OID)) return false;
803
804 len = asn1_tag_remaining(data);
805 if (len < 0) {
806 data->has_error = true;
807 return false;
808 }
809
810 blob = data_blob(NULL, len);
811 if (!blob.data) {
812 data->has_error = true;
813 return false;
814 }
815
816 if (!asn1_read(data, blob.data, len)) return false;
817 if (!asn1_end_tag(data)) {
818 data_blob_free(&blob);
819 return false;
820 }
821
822 if (!ber_read_OID_String(mem_ctx, blob, OID)) {
823 data->has_error = true;
824 data_blob_free(&blob);
825 return false;
826 }
827
828 data_blob_free(&blob);
829 return true;
830}
831
832/* check that the next object ID is correct */
833bool asn1_check_OID(struct asn1_data *data, const char *OID)
834{
835 char *id;
836
837 if (!asn1_read_OID(data, data, &id)) return false;
838
839 if (strcmp(id, OID) != 0) {
840 talloc_free(id);
841 data->has_error = true;
842 return false;
843 }
844 talloc_free(id);
845 return true;
846}
847
848/* read a LDAPString from a ASN1 buffer */
849bool asn1_read_LDAPString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
850{
851 int len;
852 len = asn1_tag_remaining(data);
853 if (len < 0) {
854 data->has_error = true;
855 return false;
856 }
857 *s = talloc_array(mem_ctx, char, len+1);
858 if (! *s) {
859 data->has_error = true;
860 return false;
861 }
862 (*s)[len] = 0;
863 return asn1_read(data, *s, len);
864}
865
866
867/* read a GeneralString from a ASN1 buffer */
868bool asn1_read_GeneralString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
869{
870 if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return false;
871 if (!asn1_read_LDAPString(data, mem_ctx, s)) return false;
872 return asn1_end_tag(data);
873}
874
875
876/* read a octet string blob */
877bool asn1_read_OctetString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
878{
879 int len;
880 ZERO_STRUCTP(blob);
881 if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return false;
882 len = asn1_tag_remaining(data);
883 if (len < 0) {
884 data->has_error = true;
885 return false;
886 }
887 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
888 if (!blob->data || blob->length < len) {
889 data->has_error = true;
890 return false;
891 }
892 if (!asn1_read(data, blob->data, len)) goto err;
893 if (!asn1_end_tag(data)) goto err;
894 blob->length--;
895 blob->data[len] = 0;
896 return true;
897
898 err:
899
900 data_blob_free(blob);
901 *blob = data_blob_null;
902 return false;
903}
904
905bool asn1_read_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
906{
907 int len;
908 ZERO_STRUCTP(blob);
909 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
910 len = asn1_tag_remaining(data);
911 if (len < 0) {
912 data->has_error = true;
913 return false;
914 }
915 *blob = data_blob(NULL, len);
916 if ((len != 0) && (!blob->data)) {
917 data->has_error = true;
918 return false;
919 }
920 if (!asn1_read(data, blob->data, len)) return false;
921 return asn1_end_tag(data);
922}
923
924/* read an integer without tag*/
925bool asn1_read_implicit_Integer(struct asn1_data *data, int *i)
926{
927 uint8_t b;
928 bool first_byte = true;
929 *i = 0;
930
931 while (!data->has_error && asn1_tag_remaining(data)>0) {
932 if (!asn1_read_uint8(data, &b)) return false;
933 if (first_byte) {
934 if (b & 0x80) {
935 /* Number is negative.
936 Set i to -1 for sign extend. */
937 *i = -1;
938 }
939 first_byte = false;
940 }
941 *i = (*i << 8) + b;
942 }
943 return !data->has_error;
944
945}
946
947/* read an integer */
948bool asn1_read_Integer(struct asn1_data *data, int *i)
949{
950 *i = 0;
951
952 if (!asn1_start_tag(data, ASN1_INTEGER)) return false;
953 if (!asn1_read_implicit_Integer(data, i)) return false;
954 return asn1_end_tag(data);
955}
956
957/* read a BIT STRING */
958bool asn1_read_BitString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob, uint8_t *padding)
959{
960 int len;
961 ZERO_STRUCTP(blob);
962 if (!asn1_start_tag(data, ASN1_BIT_STRING)) return false;
963 len = asn1_tag_remaining(data);
964 if (len < 0) {
965 data->has_error = true;
966 return false;
967 }
968 if (!asn1_read_uint8(data, padding)) return false;
969
970 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
971 if (!blob->data || blob->length < len) {
972 data->has_error = true;
973 return false;
974 }
975 if (asn1_read(data, blob->data, len - 1)) {
976 blob->length--;
977 blob->data[len] = 0;
978 asn1_end_tag(data);
979 }
980
981 if (data->has_error) {
982 data_blob_free(blob);
983 *blob = data_blob_null;
984 *padding = 0;
985 return false;
986 }
987 return true;
988}
989
990/* read an integer */
991bool asn1_read_enumerated(struct asn1_data *data, int *v)
992{
993 *v = 0;
994
995 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
996 while (!data->has_error && asn1_tag_remaining(data)>0) {
997 uint8_t b;
998 if (!asn1_read_uint8(data, &b)) {
999 return false;
1000 }
1001 *v = (*v << 8) + b;
1002 }
1003 return asn1_end_tag(data);
1004}
1005
1006/* check a enumerated value is correct */
1007bool asn1_check_enumerated(struct asn1_data *data, int v)
1008{
1009 uint8_t b;
1010 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
1011 if (!asn1_read_uint8(data, &b)) return false;
1012 if (!asn1_end_tag(data)) return false;
1013
1014 if (v != b)
1015 data->has_error = false;
1016
1017 return !data->has_error;
1018}
1019
1020/* write an enumerated value to the stream */
1021bool asn1_write_enumerated(struct asn1_data *data, uint8_t v)
1022{
1023 if (!asn1_push_tag(data, ASN1_ENUMERATED)) return false;
1024 if (!asn1_write_uint8(data, v)) return false;
1025 return asn1_pop_tag(data);
1026}
1027
1028/*
1029 Get us the data just written without copying
1030*/
1031bool asn1_blob(const struct asn1_data *asn1, DATA_BLOB *blob)
1032{
1033 if (asn1->has_error) {
1034 return false;
1035 }
1036 if (asn1->nesting != NULL) {
1037 return false;
1038 }
1039 blob->data = asn1->data;
1040 blob->length = asn1->length;
1041 return true;
1042}
1043
1044bool asn1_extract_blob(struct asn1_data *asn1, TALLOC_CTX *mem_ctx,
1045 DATA_BLOB *pblob)
1046{
1047 DATA_BLOB blob;
1048
1049 if (!asn1_blob(asn1, &blob)) {
1050 return false;
1051 }
1052
1053 *pblob = (DATA_BLOB) { .length = blob.length };
1054 pblob->data = talloc_move(mem_ctx, &blob.data);
1055
1056 /*
1057 * Stop access from here on
1058 */
1059 asn1->has_error = true;
1060
1061 return true;
1062}
1063
1064/*
1065 Fill in an asn1 struct without making a copy
1066*/
1067void asn1_load_nocopy(struct asn1_data *data, uint8_t *buf, size_t len)
1068{
1069 ZERO_STRUCTP(data);
1070 data->data = buf;
1071 data->length = len;
1072}
1073
1074int asn1_peek_full_tag(DATA_BLOB blob, uint8_t tag, size_t *packet_size)
1075{
1076 struct asn1_data asn1;
1077 size_t size;
1078 bool ok;
1079
1080 ZERO_STRUCT(asn1);
1081 asn1.data = blob.data;
1082 asn1.length = blob.length;
1083
1084 ok = asn1_peek_tag_needed_size(&asn1, tag, &size);
1085 if (!ok) {
1086 return EMSGSIZE;
1087 }
1088
1089 if (size > blob.length) {
1090 *packet_size = size;
1091 return EAGAIN;
1092 }
1093
1094 *packet_size = size;
1095 return 0;
1096}
Note: See TracBrowser for help on using the repository browser.